Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

АКТУАЛЬНЫЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ НАУКИ, ТЕХНИКИ И ОБРАЗОВАНИЯ

Тезисы докладов 76-й международной научно-технической конференции

Том 2

Мероприятие проведено при финансовой поддержке Российского фонда фундаментальных исследований, Проект № 18-08-20013

> Магнитогорск 2018

Редколлегия:

Председатель редколлегии Зам. председателя редколлегии Главный редактор Ответственный редактор

проф., д-р техн. наук О.Н. Тулупов проф., д-р техн. наук Г.С. Гун канд. техн. наук Ю.В. Короткова канд. техн. наук С.В. Пыхтунова

канд. ист. наук О.А. Голубева; доц., канд. ист. наук Н.Н. Макарова; доц., канд. техн. наук Н.А. Осинцев;

доц., канд. пед. наук Н.В. Кузнецова; канд. техн. наук Е.Г. Нешпоренко; канд. техн. наук А.С. Харченко; доц., канд. филос. наук Э.П. Чернышова; доц., канд. техн. наук М.В. Шубина

> Тезисы докладов входят в базу данных Российского индекса научного цитирования (РИНЦ)

Актуальные проблемы современной науки, техники и образования: тезисы докладов 76-й международной научно-технической конференции. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И. Носова, 2018. T.2. 512 c.

ISBN 978-5-9967-1245-8

ISBN 978-5-9967-1245-8

© Магнитогорский государственный технический университет им. Г.И. Носова, 2018

	Романов П.Ю.
	Практико-ориентированное образование как основа эффективной подготовки специалиста
	Великих А.С., Кужим К.В.
	Формирование исследовательских компетенций учащихся при изучении
	свойств листа Мебиуса
	Кинзина И.И., Смирнова Л.В.
	Решение математической задачи несколькими способами как педагогический
	прием
	Великих А.С., Сунко Д.В.
	Организация исследовательской деятельности одаренных школьников в летней
	математической школе «Озарение» на базе ДООЦ «Горное ущелье»
	Швалёва А.В., Мустафина А.К.
	Исследование зависимости механических свойств стали от химического
	состава в исследовательских работах студентов
C	екция «Прикладная математика и информатика» 123
	Кадченко С.И., Рязанова Л.С., Торшина О.А., Пуршева А.В.
	Алгоритмы решения обратных спектральных задач, порожденных
	дискретными полуограниченными операторами заданных
	на геометрических графах
	Кадченко С.И., Закирова Г.А., Рязанова Л.С., Торшина О.А.
	Алгоритмы численного решения обратных спектральных задач
	для восстановления значений неизвестных функций операторов
	Штурма-Лиувилля
	Кадченко С.И., Рязанова Л.С., Закирова Г.А.
	Обратная спектральная задача определения неоднородности упругого слоя 125
	Кадченко С.И., Закирова Г.А.
	Обратная спектральная задача для математической модели свободных
	колебаний стратифицированного океана
	Кадченко С.И., Закирова А.А., Рязанова Л.С.
	Решение обратных спектральных задач, порожденных дискретными
	полуограниченными операторами
	Берденова Г.Ж.
	О поведениях решений одной линейной дифференциальной системы
	4-го порядка в пространстве двумерных вектор-функций
	Кириллов Е.В.
	Прямая спектральная задача для возмущенного относительного спектра
	оператора
	Рыщанова С.М.
	Приложение дифференциальных уравнений в инженерно-технических задачах 130
	Ысмагул Р.С.
	Построение почти-многопериодических решений эволюционных уравнений 131
	Кинзина И.И., Смирнова Л.В.
	К вопросу о восстановлении гладкого потенциала в обратной задаче
	Борга-Левинсона

Рыщанова С.М., ст. преп.,

Костанайский государственный университет имени А. Байтурсынова, г. Костанай, Республика Казахстан

ПРИЛОЖЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ИНЖЕНЕРНО-ТЕХНИЧЕСКИХ ЗАДАЧАХ

Дифференциальные уравнения занимают особое место в математике и имеют многочисленные приложения. В большинстве случаев методика решения технических задач с применением дифференциальных уравнений сводится к составлению дифференциального уравнения рассматриваемого процесса и определения общего и частного решений. По мере необходимости, используя дополнительные условия задачи, находят вспомогательные переменные (например, коэффициент пропорциональности и др.). Выводят общий закон рассматриваемого процесса и определяют числовое значение искомых величин.

Приведем примеры задач инженерно-технического характера.

Задача 1. В цепи поддерживается напряжение E = 300 Вольт. Сопротивление цепи R=150 Ом. Коэффициент самоиндукции L = 30 Генри. За какое время с момента замыкания цепи возникающий в ней ток і достигнет 99% своей предельной величины?

Электродвижущая сила самоиндукции пропорциональна скорости нарастания силы тока. Коэффициентом пропорциональности служит коэффициент L самоиндукции цепи. В процессе замыкания цепи в ней действуют две прямо противоположные электродвижущие силы: напряжение цепи E и электродвижущая сила самоиндукции E_1 = $-L\frac{di}{dt}$. Алгебраическая сумма этих электродвижущих сил

равна: V=E-L $\frac{di}{dt}$. По закону Ома сила тока і в цепи будет: $i=\frac{E-L\frac{di}{dt}}{R}$. Преобразовав и интегрируя, имеем: $t=-\frac{L\cdot\ln(E-Ri)}{R}+C$. Начальное условие при t=0, i=0 дает:

130

 $C = \frac{L}{R*\ln E}$. Таким образом, закон процесса выражается зависимостью: $t = \frac{L}{R} \cdot \ln \frac{E}{E - Ri}$. Так как предельным значением і будет $I = \frac{E}{R}$, то по условию задачи і $= \frac{0.99E}{R}$. Искомое время равно: $t = \frac{L}{R} \cdot \ln 100$. Подставляя числовые значения L и R, окончательно получим: $t = 30/150*\ln 100\approx 0,92$ сек.

Задача 2. Стальная проволока длиной l м с поперечным сечением F растягивается силой, постепенно возрастающей до величины P. Найти работу растяжения.

Список литературы

- Краснов М. Л. Сборник задач по обыкновенным дифференциальным уравнениям. М.: Наука, 1980. 352 с.
- Матвеев Н.М. Методы интегрирования обыкновенных дифференциальных уравнений. Минск: Вышэйшая школа, 1974. 766 с.

(