АКТУАЛЬНЫЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ НАУКИ, ТЕХНИКИ И ОБРАЗОВАНИЯ

Тезисы докладов 76-й международной научно-технической конференции

Tом 2

Мероприятие проведено при финансовой поддержке Российского фонда фундаментальных исследований, Проект № 18-08-20013

Магнитогорск
2018

Редколлегия:

Председатель редколлегии Зам. председателя редколлегии Главный редактор Ответственный редактор

проф., д-р техн. наук О.Н. Тулупов проф., д-р техн. наук Г.С. Гун канд. техн. наук Ю.В. Короткова канд. техн. наук С.В. Пыхтунова

канд. ист. наук О.А. Голубева;
доц., канд. ист. наук Н.Н. Макарова;
доц., канд. техн. наук Н.А. Осинцев;
доц., канд. филос. наук Э.П. Чернышова;

доц., канд. пед. наук Н.В. Кузнецова; канд. техн. наук Е.Г. Нешпоренко; канд. техн. наук А.С. Харченко; доц., канд. техн. наук М.В. Шубина

Тезисы докладов входят в базу данньх Российского индекса научного цитирования (РИНЦ)

Актуальные проблемы современной науки, техники и образования: тезисы докладов 76-й международной научно-технической конференции. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И. Носова, 2018. T.2. 512 c.

ISBN 978-5-9967-1245-8

ISBN 978-5-9967-1245-8
© Магнитогорский государственный технический университет им. Г.И. Носова, 2018
Романов П.Ю.
Практико-ориентированное образование как основа эффективной подготовки специалиста 118
Великих А.С., Кужим К.В.
Формирование исследовательских компетенций учащихся при изучении свойств листа Мебиуса 119
Кинзина И.И., Смирнова Л.В.
Решение математической задачи несколькими способами как педагогический прием 120
Великих А.С., Сунко Д.В.
Организация исследовательской деятельности одаренных школьников в летней математической школе «Озарение» на базе ДООЦ «Горное ущелье» 121
Швалёва А.В., Мустафина А.К.
Исследование зависимости механических свойств стали от химического состава в исследовательских работах студентов 122
Секция «Прикладная математика и информатика» 123
Кадченко С.И., Рязанова Л.С., Торшина О.А., Пуршева А.В.
Алгоритмы решения обратных спектральных задач, порожденных дискретными полуограниченными операторами заданных на геометрических графах 123
Кадченко С.И., Закирова Г.А., Рязанова Л.С., Торшина О.А.
Алгоритмы численного решения обратных спектральных задач для восстановления значений неизвестных функций операторов Штурма-Лиувилля 124
Кадченко С.И., Рязанова Л.С., Закирова Г.А. Обратная спектральная задача определения неоднородности упругого слоя 125
Кадченко С.И., Закирова Г.А.
Обратная спектральная задача для математической модели свободных колебаний стратифицированного океана 126
Кадченко С.И., Закирова А.А., Рязанова Л.С.
Решение обратных спектральных задач, порожденных дискретными полуограниченными операторами 127
Берденова Г.Ж.
О поведениях решений одной линейной дифференциальной системы 4-го порядка в пространстве двумерных вектор-функций 128
Кириллов Е.В.
Прямая спектральная задача для возмущенного относительного спектра оператора 129
Рыщанова С.М.
Приложение дифференциальных уравнений в инженерно-технических задачах 1 130
Ысмагул Р.С.
Построение почти-многопериодических решений эволюционных уравнений 131
Кинзина И.И., Смирнова Л.В.
К вопросу о восстановлении гладкого потенциала в обратной задаче Борга-Левинсона 132

Рыщанова С.М., ст. преп.,
Костанайский государственный университет имени А. Байтурсынова, г. Костанай, Республика Казахстан

ПРИЛОЖЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ИНЖЕНЕРНО-ТЕХНИЧЕСКИХ ЗАДАЧАХ

Дифференциальные уравнения занимают особое место в математике и имеют многочисленные приложения. В большинстве случаев методика решения технических задач с применением дифференциальных уравнений сводится к составлению дифференциального уравнения рассматриваемого процесса и определения общего и частного решений. По мере необходимости, используя дополнительные условия задачи, находят вспомогательные переменные (например, коэффициент пропорциональности и др.). Выводят общий закон рассматриваемого процесса и определяют числовое значение искомых величин.

Приведем примеры задач инженерно-технического характера.
Задача 1. В цепи поддерживается напряжение $\mathrm{E}=300$ Вольт. Сопротивление цепи $\mathrm{R}=150$ Ом. Коэффициент самоиндукции $\mathrm{L}=30$ Генри. За какое время c момента замыкания цепи возникающий в ней ток і достигнет 99% своей предельной величины?

Электродвижущая сила самоиндукции пропорциональна скорости нарастания силы тока. Коэффициентом пропорциональности служит коэффициент L самоиндукции цепи. В процессе замыкания цепи в ней действуют две прямо противоположные электродвижущие силы: напряжение цепи E и электродвижущая сила самоиндукции $\mathrm{E}_{1}=-\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$. Алгебраическая сумма этих электродвижущих сил равна: $\mathrm{V}=\mathrm{E}-\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$. По закону Ома сила тока і в цепи будет: $\mathrm{i}=\frac{\mathrm{E}-\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}}{\mathrm{R}}$. Преобразовав и интегрируя, имеем: $t=-\frac{L \cdot \ln (E-R i)}{R}+C$. Начальное условие при $\mathrm{t}=0, \mathrm{i}=0$ дает:
$\mathrm{C}=\frac{\mathrm{L}}{\mathrm{R} * \ln \mathrm{E}}$. Таким образом, закон процесса выражается зависимостью: $t=\frac{L}{R} \cdot \ln \frac{E}{E-R i}$.Так как предельным значением i будет $I=\frac{\mathrm{E}}{\mathrm{R}}$, то по условию задачи $\mathrm{i}=\frac{0.99 \mathrm{E}}{\mathrm{R}}$. Искомое время равно: $t=\frac{L}{R} \cdot \ln 100$. Подставляя числовые значения L и R , окончательно получим: $t=30 / 150 * \ln 100 \approx 0,92$ сек.

Задача 2. Стальная проволока длиной l м с поперечным сечением F растягивается силой, постепенно возрастающей до величины P. Найти работу растяжения.

Список литературы

1. Краснов М. Л. Сборник задач по обыкновенным дифференциальным уравнениям. М.: Наука, 1980. 352 с.
2. Матвеев Н.М. Методы интегрирования обыкновенных дифференциальных уравнений. Минск: Вышэйшая школа, 1974. 766 с.
