Second International Conference on Analysis and Applied Mathematics

ICAAM 2014

ABSTRACT BOOK

M. Auezov South Kazakhstan State University, Kazakhstan Fatih University & Gumushane University, Turkey

Editors: Charyyar Ashyralyyev Zafer Cakir Deniz Agirseven

> Shymkent, Kazakhstan September 11-13, 2014

The deficiency indices of singular differential operators in vector-valued functions space

Yaudat Sultanaev^a, Gulnar Berdenova^b

^aM. Akmullah Bashkir State Pedagogical University, Kazakhstan

^bL.N. Gumilyov Eurasian National University, Kazakhstan

^asultanaevyt@gmail.com, ^bgulnar_7109@mail.ru

Abstract: In this work, we consider the minimal differential operator L_0 in the space $H = L^2(0,\infty) \oplus L^2(0,\infty)$ which generated by the following differential expression:

$$L_{0}(y) = y^{(4)} + Q(x)y. {1}$$

Here $y(x)=(y_1(x),y_2(x)), \ 0 < x < \infty \text{ and } Q(x)=||q_{ij}||^2_{i,j=1}$ is a real simmetric matrix, whose eigenvalues $\mu_1(x) \to +\infty$, $\mu_2(x) \to -\infty$, for $x \to \infty$.

Introduce $\varphi(x) = \frac{1}{2} \arctan \frac{q_{22} - q_{11}}{2q_{12}}$. The function $\varphi(x)$ is called as the speed of the

rotation of eigenvectors of the matrix Q(x).

Theorem 1. Assume that for sufficiently large x_0 and $x > x_0$ the following inequalities

1)
$$|\varphi'(x)| < \text{const}$$
,

2)
$$0 < A \le \left| \frac{\mu_i(x)}{\mu_j(x)} \right| \le B, i, j = 1, 2,$$

$$3) \int_{x_0}^{\infty} \left| \mu_i^{-\frac{1}{4}}(x) \right| dx < \infty, \int_{x_0}^{\infty} \left| \frac{\mu_i^{'2}(x)}{\frac{9}{\mu_i^{'4}}(x)} + \frac{\mu_i^{''}(x)}{\mu_i^{'4}(x)} \right| dx < \infty, \int_{x_0}^{\infty} \left| \frac{\varphi^{''}(x)}{\mu_i^{'4}(x)} \right| dx < \infty, i = 1,2$$

4)
$$|\mu_{i}(x)| \le C |\mu_{i}(x)|^{\alpha}$$
, $C = \text{const}$, $i = 1,2$, $0 < \alpha < \frac{5}{4}$

is satisfied. Then, system (1) has eight linearly independent solutions $y_j(x,\lambda)$ for $x \to \infty$, such that

$$\begin{split} y_1 &= \varphi_1(x,\lambda) \exp\left\{\int_0^x (\lambda - \mu_1(t))^{\frac{1}{4}} dt\right\} (1 + o(1)), \\ y_2 &= \varphi_1(x,\lambda) \exp\left\{-\int_0^x (\lambda - \mu_1(t))^{\frac{1}{4}} dt\right\} (1 + o(1)), \\ y_3 &= \varphi_1(x,\lambda) \exp\left\{i\int_0^x (\lambda - \mu_1(t))^{\frac{1}{4}} dt\right\} (1 + o(1)), \\ y_4 &= \varphi_1(x,\lambda) \exp\left\{-i\int_0^x (\lambda - \mu_1(t))^{\frac{1}{4}} dt\right\} (1 + o(1)), \\ y_5 &= \varphi_2(x,\lambda) \exp\left\{\int_0^x (\lambda - \mu_2(t))^{\frac{1}{4}} dt\right\} (1 + o(1)), \\ y_6 &= \varphi_2(x,\lambda) \exp\left\{-\int_0^x (\lambda - \mu_2(t))^{\frac{1}{4}} dt\right\} (1 + o(1)), \\ \end{split}$$

$$y_7 = \varphi_2(x, \lambda) \exp\left\{i \int_0^x (\lambda - \mu_2(t))^{\frac{1}{4}} dt\right\} (1 + o(1)), y_8 = \varphi_2(x, \lambda) \exp\left\{-i \int_0^x (\lambda - \mu_2(t))^{\frac{1}{4}} dt\right\} (1 + o(1)),$$

where

$$\varphi_{1}(\mathbf{x},\lambda) = \frac{1}{\sqrt[8]{(\lambda - \mu_{1}(\mathbf{x}))^{3}}} \begin{pmatrix} \cos \varphi(\mathbf{x}) \\ -\sin \varphi(\mathbf{x}) \end{pmatrix}, \varphi_{2}(\mathbf{x},\lambda) = \frac{1}{\sqrt[8]{(\lambda - \mu_{2}(\mathbf{x}))^{3}}} \begin{pmatrix} \sin \varphi(\mathbf{x}) \\ \cos \varphi(\mathbf{x}) \end{pmatrix}.$$

Theorem 2. Let holds all conditions of theorem 1. Then the deficiency indices of operator L_0 equal to (6,6).

Keywords: differential operator, distribution of eigenvalues, indices of deficiency, asymptotics of the spectrum of the differential operator in the vector functions space.

References:

M.A. Naĭmark, Linear differential operators. Nauka, Moscow, 1969.