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Introduction 

 

 

Physics is a science about nature around us. They studies many different 

things. In this manual we will discuss three parts of general physics: 

- Magnetism. It is a theory about magnetic phenomena (permanent magnets, 

magnetic field around current-carrying conductors). 

- Optics which studies light phenomena (as geometrical and wave processes). 

- Modern physics. This part includes quantum physics, atomic physics, 

nucleus physics, physics of elementary particles. 

Physics is one of the most fundamental of the sciences. Scientists of all 

disciplines use the ideas of physics, including chemists who study the structure of 

molecules, paleontologists who try to reconstruct how dinosaurs lived, and 

climatologists who study how climate changes. Physics is also the foundation of all 

engineering and technology. No engineer could design a flat-screen TV, an 

interplanetary spacecraft, or even a better mousetrap without first understanding the 

basic laws of physics. 

We will: 

- discuss the nature of physical theory and the use of idealized models to 

represent physical systems; 

- introduce the systems of units used to describe physical quantities and discuss 

ways to describe the accuracy of a number 

- look at examples of problems for which we can’t (or don’t want to) find a 

precise answer, but for which rough estimates can be useful and interesting 

- study several aspects of vectors and vector algebra 

Vectors will be needed throughout our study of physics to describe and analyze 

physical quantities, such as velocity and force, that have direction as well as 

magnitude. 

Physics is an experimental science. Physicists observe the phenomena of nature 

and try to find patterns that relate these phenomena. These patterns are called 

physical theories or, when they are very well established and widely used, physical 

laws or principles. 

To develop a physical theory, a physicist has to learn to ask appropriate 

questions, design experiments to try to answer the questions, and draw appropriate 

conclusions from the results.  

The development of physical theories often takes an indirect path, with blind 

alleys, wrong guesses, and the discarding of unsuccessful theories in favor of more 

promising ones. Physics is not simply a collection of facts and principles; it is also 

the process by which we arrive at general principles that describe how the physical 

universe behaves. 

No theory is ever regarded as the final or ultimate truth. The possibility always 

exists that new observations will require that a theory be revised or discarded. It is in 

the nature of physical theory that we can disprove a theory by finding behaviour that 

is inconsistent with it, but we can never prove that a theory is always correct. 
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In this manual we will use the next basic denotes: 

   Force   Electric charge 

    Magnetic field   Current 

    Electric field   Resistance 

   Velocity   Voltage 

  Mass   Capacitance 

  Refractive index   Inductance 

  Area   Magnetic moment 

  Electric power   Wavelength 

  Frequency   Speed of the light 

  Focal length   Radius 

  Constant of Planck   Charge of electron 
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Topic 1 Magnetism 

 
 

1.1 Magnetic field and force 

 

1.1.1 Magnetism and magnetic field 

 
Everybody uses magnetic forces. They are at the heart of electric motors, 

microwave ovens, loudspeakers, computer printers, and disk drives. The most 

familiar examples of magnetism are permanent magnets, which attract unmagnetized 

iron objects and can also attract or repel other magnets. A compass needle aligning 

itself with the earth’s magnetism is an example of this interaction. But the 

fundamental nature of magnetism is the interaction of moving electric charges. 

Unlike electric forces, which act on electric charges whether they are moving or not, 

magnetic forces act only on moving charges. 

We saw that the electric force arises in two stages: (1) a charge produces an 

electric field in the space around it, and (2) a second charge responds to this field. 

Magnetic forces also arise in two stages. First, a moving charge or a collection of 

moving charges (that is, an electric current) produces a magnetic field. Next, a second 

current or moving charge responds to this magnetic field, and so experiences a 

magnetic force. 

In this chapter we study the second stage in the magnetic interaction - that is, 

how moving charges and currents respond to magnetic fields. In particular, we will 

see how to calculate magnetic forces and torques, and we will discover why magnets 

can pick up iron objects like paper clips. We will complete our picture of the 

magnetic interaction by examining how moving charges and currents produce 

magnetic fields. 

Magnetic phenomena were first observed at least 2500 years ago in fragments 

of magnetized iron ore found near the ancient city of Magnesia (now Manisa, in 

western Turkey). These fragments were examples of what are now called permanent 

magnets; you probably have several permanent magnets on your refrigerator door at 

home. Permanent magnets were found to exert forces on each other as well as on 

pieces of iron that were not magnetized. It was discovered that when an iron rod is 

brought in contact with a natural magnet, the rod also becomes magnetized. When 

such a rod is floated on water or suspended by a string from its center, it tends to line 

itself up in a north-south direction. The needle of an ordinary compass is just such a 

piece of magnetized iron. 

Before the relationship of magnetic interactions to moving charges was 

understood, the interactions of permanent magnets and compass needles were 

described in terms of magnetic poles. If a bar-shaped permanent magnet, or bar 

magnet, is free to rotate, one end points north. This end is called a north pole or N 

pole; the other end is a south pole or S pole. Opposite poles attract each other, and 

like poles repel each other (Fig. 1). An object that contains iron but is not itself 

magnetized (that is, it shows no tendency to point north or south) is attracted by 
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either pole of a permanent magnet (Fig. 2). This is the attraction that acts between a 

magnet and the unmagnetized steel door of a refrigerator. By analogy to electric 

interactions, we describe the interactions in Figs. 1 and 2 by saying that a bar magnet 

sets up a magnetic field in the space around it and a second body responds to that 

field. A compass needle tends to align with the magnetic field at the needle’s 

position. 

 
Figure 1 – (a) Two bar magnets attract when opposite poles (N and S, or S or 

N) are next to each other. (b) The bar magnets repel when like poles (N and N, or S 

and S) are next to each other 

 

 
Figure 2 – (a) Either pole a bar magnet attracts an unmagnetized object that 

contains iron, such as a nail. (b) A real-life example of this effect 
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The earth itself is a magnet. Its north geographic pole is close to a magnetic 

south pole, which is why the north pole of a compass needle points north. The earth’s 

magnetic axis is not quite parallel to its geographic axis (the axis of rotation), so a 

compass reading deviates somewhat from geographic north. This deviation, which 

varies with location, is called magnetic declination or magnetic variation. Also, the 

magnetic field is not horizontal at most points on the earth’s surface; its angle up or 

down is called magnetic inclination. At the magnetic poles the magnetic field is 

vertical. 

Figure 3 is a sketch of the earth’s magnetic field. The lines, called magnetic 

field lines, show the direction that a compass would point at each location.. The 

direction of the field at any point can be defined as the direction of the force that the 

field would exert on a magnetic north pole. In follow section we’ll describe a more 

fundamental way to define the direction and magnitude of a magnetic field. 

 

 
Figure 3 – A sketch of the earth’s magnetic field. The field, which is caused by 

currents in the earth’s molten core, changes with time; geologic evidence shows that 

it reverses  direction entirely at irregular intervals of 10
4
 to 10

6
 

 

To introduce the concept of magnetic field properly, let’s review our 

formulation of electric interactions, where we introduced the concept of electric field. 

We represented electric interactions in two steps: 

1. A distribution of electric charge at rest creates an electric field     in the 

surrounding space. 
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2. The electric field exerts a force         on any other charge that is present 

in the field. We can describe magnetic interactions in a similar way: 

1. A moving charge or a current creates a magnetic field in the surrounding 

space (in addition to its electric field). 

2. The magnetic field exerts a force    on any other moving charge or current 

that is present in the field. 

In this chapter we’ll concentrate on the second aspect of the interaction: Given 

the presence of a magnetic field, what force does it exert on a moving charge or a 

current? Next we will come back to the problem of how magnetic fields are created 

by moving charges and currents. 

Like electric field, magnetic field is a vector field - that is, a vector quantity 

associated with each point in space. We will use the symbol     for magnetic field. At 

any position the direction of     is defined as the direction in which the north pole of a 

compass needle tends to point. The arrows in Fig. 3 suggest the direction of the 

earth’s magnetic field; for any magnet,     points out of its north pole and into its 

south pole. 

There are four key characteristics of the magnetic force on a moving charge. 

First, its magnitude is proportional to the magnitude of the charge. If a      charge 

and  a      charge move through a given magnetic field with the same velocity, 

experiments show that the force on the 2    charge is twice as great as the force on 

the charge. Second, the magnitude of the force is also proportional to the magnitude, 

or “strength,” of the field; if we double the magnitude of the field (for example, by 

using two identical bar magnets instead of one) without changing the charge or its 

velocity, the force doubles. 

A third characteristic is that the magnetic force depends on the particle’s 

velocity. This is quite different from the electric-field force, which is the same 

whether the charge is moving or not. A charged particle at rest experiences no 

magnetic force. And fourth, we find by experiment that the magnetic force    does not 

have the same direction as the magnetic field but instead is always perpendicular to 

both     and the velocity   . The magnitude F of the force is found to be proportional to 

the component of    perpendicular to the field; when that component is zero (that is, 

when    and     are parallel or antiparallel), the force is zero. 

Figure 4 shows these relationships. The direction of    is always perpendicular 

to the plane containing    and    . Its magnitude is given by 

 

                   (1) 

 

where     is the magnitude of the charge and   is the angle measured from the 

direction of    to the direction of    , as shown in the figure. 

This description does not specify the direction of    completely; there are 

always two directions, opposite to each other, that are both perpendicular to the plane 

of    and    . To complete the description, we use the same right-hand rule . (It would 
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be a good idea to review that section before you go on.) Draw the vectors    and     
with their tails together, as in Fig. 5a. Imagine turning    until it points in the direction 

of     (turning through the smaller of the two possible angles). Wrap the fingers of 

your right hand around the line perpendicular to the plane of    and     so that they curl 

around with the sense of rotation from    to    . Your thumb then points in the 

direction of the force    on a positive charge. (Alternatively, the direction of the force 

   on a positive charge is the direction in which a right-hand-thread screw would 

advance if turned the same way.) 

This discussion shows that the force on a charge moving with velocity in a 

magnetic field     is given, both in magnitude and in direction, by (magnetic force on a 

moving charged particle)  

 

           (2) 

 

This is the first of several vector products we will encounter in our study of magnetic-

field relationships. It’s important to note that Eq. (2) was not deduced theoretically; it 

is an observation based on experiment. 

 
Figure 4 – The magnetic force    acting on a positive charge   moving with velocity 

   and the magnetic field    . For given values of the speed   and magnetic field 

strength  , the force is greatest when    and     are perpendicular 
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Equation (2) is valid for both positive and negative charges. When   is 

negative, the direction of the force    is opposite to that of        (Fig. 5b). If two 

charges with equal magnitude and opposite sign move in the same     field with the 

same velocity (Fig. 6), the forces have equal magnitude and opposite direction. 

Figures 4, 5, and 6 show several examples of the relationships of the directions of 

      and     for both positive and negative charges. Be sure you understand the 

relationships shown in these figures. 

 

 
Figure 5 – Finding the direction of the magnetic force on a moving charged particle 

 

 
Figure 6 – Two charges of the same magnitude but opposite sign moving with 

the same velocity in the same magnetic field. The magnetic force on the charges are 

equal in magnitude but opposite direction 

 

Equation (1) gives the magnitude of the magnetic force    in Eq. (2). We can 

express this magnitude in a different but equivalent way. Since   is the angle 

between the directions of vectors    and    , we may interpret       as the component 

of     perpendicular to   —that is,   . With this notation the force magnitude is 

 

         (3) 
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This form is sometimes more convenient, especially in problems involving currents 

rather than individual particles. We will discuss forces on currents later in this 

chapter. 

From Eq. (1) the units of   must be the same as the units of .      Therefore 

the SI unit of   is equivalent to          , or, since one ampere is one coulomb 

per second                    . This unit is called the tesla (abbreviated T), in 

honor of Nikola Tesla (1856–1943), the prominent Serbian-American scientist and 

inventor:  

 

                    

 

The magnetic field of the earth is of the order of 10
-4

 T.. Magnetic fields of the 

order of 10 T occur in the interior of atoms and are important in the analysis of 

atomic spectra. The largest steady magnetic field that can be produced at present in 

the laboratory is about 45 T. Some pulsed-current electromagnets can produce fields 

of the order of 120 T for millisecond time intervals. 

 

1.1.2 Motion of Charged Particles in a Magnetic Field 
 

When a charged particle moves in a magnetic field, it is acted on by the 

magnetic force given by Eq. (2), and the motion is determined by Newton’s laws. 

Figure 7a shows a simple example. A particle with positive charge   is at point O 

moving with velocity    in a uniform magnetic field     directed into the plane of the 

figure. The vectors    and     are perpendicular, so the magnetic force            has 

magnitude       and a direction as shown in the figure. The force is always 

perpendicular to    so it cannot change the magnitude of the velocity, only its 

direction. To put it differently, the magnetic force never has a component parallel to 

the particle’s motion, so the magnetic force can never do work on the particle. This is 

true even if the magnetic field is not uniform. 

Motion of a charged particle under the action of a magnetic field alone is 

always motion with constant speed. 

Using this principle, we see that in the situation shown in Fig. 7a the 

magnitudes of both    and    are constant. At points such as P and S the directions of 

force and velocity have changed as shown, but their magnitudes are the same. The 

particle therefore moves under the influence of a constant-magnitude force that is 

always at right angles to the velocity of the particle. Comparing the discussion of 

circular motion early, we see that the particle’s path is a circle, traced out with 

constant speed  . The centripetal acceleration is      and only the magnetic force 

acts, so from Newton’s second law, 

 

         
  

 
 

(4) 
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where is the mass of the particle. Solving Eq. (4) for the radius R of the circular path, 

we find  

 

  
  

    
 

(5) 

 

 
Figure 7 – A charged particle moves in a plane perpendicular to a uniform magnetic 

field     
 

We can also write this as         , where      is the magnitude of the 

particle’s momentum. If the charge   is negative, the particle moves clockwise 

around the orbit in Fig. 7a.  

The angular speed   of the particle can be found from equation     . 

Combining this with Eq. (5), we get 

 

  
 

 
  

    

  
 
    

 
 

(6) 

 

The number of revolutions per unit time is       . This frequency   is 

independent of the radius R of the path. It is called the cyclotron frequency; in a 

particle accelerator called a cyclotron, particles moving in nearly circular paths are 

given a boost twice each revolution, increasing their energy and their orbital radii but 

not their angular speed or frequency. Similarly, one type of magnetron, a common 

source of microwave radiation for microwave ovens and radar systems, emits 

radiation with a frequency equal to the frequency of circular motion of electrons in a 

vacuum chamber between the poles of a magnet. 

If the direction of the initial velocity is not perpendicular to the field, the 
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velocity component parallel to the field is constant because there is no force parallel 

to the field. Then the particle moves in a helix (Fig. 8). The radius of the helix is 

given by Eq. (5), where is now the component of velocity perpendicular to the     
field. 

 

 
Figure 8 – The general case of a charged particle moving in a uniform magnetic field 

   . The magnetic field does no work on the particle, so its speed and kinetic energy 

remain constant 

 

Motion of a charged particle in a nonuniform magnetic field is more complex. 

Figure 9 shows a field produced by two circular coils separated by some distance. 

Particles near either coil experience a magnetic force toward the center of the region; 

particles with appropriate speeds spiral repeatedly from one end of the region to the 

other and back. Because charged particles can be trapped in such a magnetic field, it 

is called a magnetic bottle. This technique is used to confine very hot plasmas with 

temperatures of the order of 10
6
 K. In a similar way the earth’s nonuniform magnetic 

field traps charged particles coming from the sun in doughnut-shaped regions around 

the earth, as shown in Fig. 10. These regions, called the Van Allen radiation belts, 

were discovered in 1958 using data obtained by instruments aboard the Explorer I 

satellite. 

 

 



16 
 

 
Figure 9 – A magnetic bottle. Particles near either end of the region experience a 

magnetic force toward the center of the region. This is one way of containing an 

ionized gas that has a temperature of the order of 10
6
 K, which would vaporize any 

material container 

 

 
Figure 10 – (a) The Van Allen radiation belts around the earth. Near the poles, 

charged particles from these belts can enter the atmosphere, producing the aurora 

borealis (“northern lights”) and aurora australis (“southern lights”). (b) A photograph 

of the aurora borealis 

 

Magnetic forces on charged particles play an important role in studies of 

elementary particles. Figure 11 shows a chamber filled with liquid hydrogen and with 

a magnetic field directed into the plane of the photograph. A high-energy gamma ray 

dislodges an electron from a hydrogen atom, sending it off at high speed and creating 

a visible track in the liquid hydrogen. The track shows the electron curving 

downward due to the magnetic force. The energy of the collision also produces 

another electron and a positron (a positively charged electron). Because of their 
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opposite charges, the trajectories of the electron and the positron curve in opposite 

directions. As these particles plow through the liquid hydrogen, they collide with 

other charged particles, losing energy and speed. As a result, the radius of curvature 

decreases as suggested by Eq. (5). (The electron’s speed is comparable to the speed 

of light, so Eq. (5) isn’t directly applicable here.) Similar experiments allow 

physicists to determine the mass and charge of newly discovered particles. 

 

 
Figure 11 – This bubble chamber image shows the result of a high-energy gamma ray 

(which does not leave a track) that collides with an electron in a hydrogen atom. This 

electron flies off to the right at high speed. Some of the energy in the collision is 

transformed into a second electron and a positron (a positively charged electron). A 

magnetic field is directed into the plane of the image, which makes the positive and 

negative particles curve off in different directions 

 

1.1.3 Magnetic Force on a Current-Carrying Conductor 

 

What makes an electric motor work? Within the motor are conductors that 

carry currents (that is, whose charges are in motion), as well as magnets that exert 

forces on the moving charges. Hence there is a magnetic force along the length of 

each current-carrying conductor, and these forces make the motor turn. The moving-

coil galvanometer also uses magnetic forces on conductors. 

We can compute the force on a current-carrying conductor starting with the 

magnetic force            on a single moving charge. Figure 12 shows a straight 
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segment of a conducting wire, with length l and cross-sectional area S; the current is 

from bottom to top. The wire is in a uniform magnetic field    , perpendicular to the 

plane of the diagram and directed into the plane. Let’s assume first that the moving 

charges are positive. Later we’ll see what happens when they are negative. 

 

 
Figure 12 - Forces on a moving positive charge in a current-carrying conductor 

 

The drift velocity     is upward, perpendicular to    . The average force on each 

charge is             directed to the left as shown in the figure; since     and     are 

perpendicular, the magnitude of the force is       . 

We can derive an expression for the total force on all the moving charges in a 

length l of conductor with cross-sectional area S using the same language we used in 

Eqs.         and       . The number of charges per unit volume is n; a 

segment of conductor with length l has volume Sl and contains a number of charges 

equal to nSl. The total force    on all the moving charges in this segment has 

magnitude 

 

                          (7) 

 

The current density is       . The product JS is the total current I so we can 

rewrite Eq. (7) as 

 

      (8) 

 

If the     field is not perpendicular to the wire but makes an angle   with it, we 

handle the situation the same way we did early for a single charge. Only the 
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component of     perpendicular to the wire (and to the drift velocities of the charges) 

exerts a force; this component is         . The magnetic force on the wire 

segment is then 

 

               (9) 

 

The force is always perpendicular to both the conductor and the field, with the 

direction determined by the same right-hand rule we used for a moving positive 

charge (Fig. 13). Hence this force can be expressed as a vector product, just like the 

force on a single moving charge. We represent the segment of wire with a vector    

along the wire in the direction of the current; then the force    on this segment is 

 

           (10) 

 

Figure 14 illustrates the directions of        and    for several cases. 

If the conductor is not straight, we can divide it into infinitesimal segments    . 

The force     on each segment is 

 

             (11) 

 

Then we can integrate this expression along the wire to find the total force on a 

conductor of any shape. The integral is a line integral, the same mathematical 

operation we have used to define work and electric potential. 

 

 
Figure 13 – A straight wire segment of length    carries a current I in the direction of   . 

The magnetic force on this segment is perpendicular to both    ans the magnetic field 
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Figure 14 – Magnetic field    , length   , and force    vectors for a straight wire 

carrying a current I 

 

Finally, what happens when the moving charges are negative, such as electrons 

in a metal? Then in Fig. 12 an upward current corresponds to a downward drift 

velocity. But because is now negative, the direction of the force    is the same as 

before. Thus Eqs. (8) through (11) are valid for both positive and negative charges 

and even when both signs of charge are present at once. This happens in some 

semiconductor materials and in ionic solutions. 

A common application of the magnetic forces on a current-carrying wire is 

found in loudspeakers (Fig. 15). The radial magnetic field created by the permanent 

magnet exerts a force on the voice coil that is proportional to the current in the coil; 

the direction of the force is either to the left or to the right, depending on the direction 

of the current. The signal from the amplifier causes the current to oscillate in 

direction and magnitude. The coil and the speaker cone to which it is attached 

respond by oscillating with an amplitude proportional to the amplitude of the current 

in the coil. Turning up the volume knob on the amplifier increases the current 

amplitude and hence the amplitudes of the cone’s oscillation and of the sound wave 

produced by the moving cone. 
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Figure 15 – (a) Components of a loudspeaker. (b) The permanent magnet creates a 

magnetic field that exerts forces on the current in the voice coil; for a current I in the 

direction shown, the force is to the right. If the electric current in the voice coil 

oscillates, the speaker cone attached to the voice coil oscillates at the same frequency 

 

Discussion questions 

1. Can a charged particle move through a magnetic field without experiencing 

any force? If so, how? If not, why not? 

2. At any point in space, the electric field E is defined to be in the direction of the 

electric force on a positively charged particle at that point. Why don’t we 

similarly define the magnetic field B to be in the direction of the magnetic 

force on a moving, positively charged particle? 

3. The magnetic force on a moving charged particle is always perpendicular to 

the magnetic field B. Is the trajectory of a moving charged particle always 

perpendicular to the magnetic field lines? Explain your reasoning. 

4. A charged particle is fired into a cubical region of space where there is a 

uniform magnetic field. Outside this region, thereis no magnetic field. Is it 

possible that the particle will remain inside the cubical region? Why or why 

not? 

5. If the magnetic force does no work on a charged particle, how can it have any 

effect on the particle’s motion? Are there other examples of forces that do no 

work but have a significant effect on a particle’s motion? 

6. A charged particle moves through a region of space with constant velocity 

(magnitude and direction). If the external magnetic field is zero in this region, 

can you conclude that the external electric field in the region is also zero? 

Explain. (By “external” we mean fields other than those produced by the 

charged particle.) If the external electric field is zero in the region, can you 

conclude that the external magnetic field in the region is also zero? 

7. How might a loop of wire carrying a current be used as a compass? Could such 

a compass distinguish between north and south? Why or why not? 

8. How could the direction of a magnetic field be determined by making only 

qualitative observations of the magnetic force on a straight wire carrying a 

current? 
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9. A loose, floppy loop of wire is carrying current The loop of wire is placed on a 

horizontal table in a uniform magnetic field B perpendicular to the plane of the 

table. This causes the loop of wire to expand into a circular shape while still 

lying on the table. In a diagram, show all possible orientations of the current 

and magnetic field that could cause this to occur. Explain your reasoning. 

10. Several charges enter a uniform magnetic field directed into the page. (a) What 

path would a positive charge moving with a velocity of magnitude follow 

through the field? (b) What path would a positive charge q moving with a 

velocity of magnitude follow through the field? (c) What path would a negative 

charge –q moving with a velocity of magnitude v follow through the field? (d) 

What path would a neutral particle follow through the field? 

11. A student claims that if lightning strikes a metal flagpole, the force exerted by 

the earth’s magnetic field on the current in the pole can be large enough to 

bend it. Typical lightning currents are of the order of 10
4
 to 10

5
 A. Is the 

student’s opinion justified? Explain your reasoning. 

12. Could an accelerator be built in which all the forces on the particles, for 

steering and for increasing speed, are magnetic forces? Why or why not? 

13. The magnetic force acting on a charged particle can never do work because at 

every instant the force is perpendicular to the velocity. The torque exerted by a 

magnetic field can do work on a current loop when the loop rotates. Explain 

how these seemingly contradictory statements can be reconciled. 

14. If an emf is produced in a dc motor, would it be possible to use the motor 

somehow as a generator or source, taking power out of it rather than putting 

power into it? How might this be done? 

15. When the polarity of the voltage applied to a dc motor is reversed, the direction 

of motion does not reverse. Why not? How could the direction of motion be 

reversed? 

16. In a Hall-effect experiment, is it possible that no transverse potential difference 

will be observed? Under what circumstances might this happen? 

17. Hall-effect voltages are much greater for relatively poor conductors (such as 

germanium) than for good conductors (such as copper), for comparable 

currents, fields, and dimensions. Why? 

 

1.2 Sources of magnetic field 

 

1.2.1 Magnetic Field of a Moving Charge 
 

Let’s start with the basics, the magnetic field of a single point charge q moving 

with a constant velocity   . In practical applications, such as the solenoid shown in the 

photo that opens this chapter, magnetic fields are produced by tremendous numbers 

of charged particles moving together in a current. But once we understand how to 

calculate the magnetic field due to a single point charge, it’s a small leap to calculate 

the field due to a current-carrying wire or collection of wires. 
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As we did for electric fields, we call the location of the moving charge at a 

given instant the source point and the point P where we want to find the field the 

field point. Early we found that at a field point a distance r from a point charge q, the 

magnitude of the electric field     caused by the charge is proportional to the charge 

magnitude     and to     , and the direction of     (for positive q) is along the line 

from source point to field point. The corresponding relationship for the magnetic field 

    of a point charge q moving with constant velocity has some similarities and some 

interesting differences. 

Experiments show that the magnitude of     is also proportional to     and to 

    . But the direction of     is not along the line from source point to field point. 

Instead,     is perpendicular to the plane containing this line and the particle’s velocity 

vector   , as shown in Fig. 16. Furthermore, the field magnitude B is also proportional 

to the particle’s speed   and to the sine of the angle  . Thus the magnetic field 

magnitude at point P is given by 

 

  
  
  

        

  
  

(12) 

 

where 
  

  
 is a proportionality constant (   is read as “mu-nought” or “mu-subzero”). 

The reason for writing the constant in this particular way will emerge shortly. We did 

something similar with Coulomb’s law. 

We can incorporate both the magnitude and direction of     into a single vector 

equation using the vector product. To avoid having to say “the direction from the 

source q to the field point P” over and over, we introduce a unit vector    (“r-hat”) 

that points from the source point to the field point. This unit vector  is equal to the 

vector    from the source to the field point divided by its magnitude        : Then the 

field of a moving point charge is 

 

    
  
  

        

  
 

(13) 

 

Figure 16 shows the relationship of    to P and also shows the magnetic field     
at several points in the vicinity of the charge. At all points along a line through the 

charge parallel to the velocity   , the field is zero because        at all such points. 

At any distance r from q,     has its greatest magnitude at points lying in the plane 

perpendicular to   , because there      and       . If q is negative, the 

directions of     are opposite to those shown in Fig. 16. 
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Figure 16 – (a) Magnetic-field vectors due to moving positive point charge  . At each 

point,     is perpendicular to the plane of    and   , and  its magnitude is proportional  to 

the sine  of the angle between them. (b) Magnetic field lines in a plane containing 

moving positive charge 

 

A point charge in motion also produces an electric field, with field lines that 

radiate outward from a positive charge. The magnetic field lines are completely 

different. For a point charge moving with velocity   , the magnetic field lines are 

circles centered on the line of    and lying in planes perpendicular to this line. The 

field-line directions for a positive charge are given by the following right-hand rule, 

one of several that we will encounter in this chapter: Grasp the velocity vector    with 

your right hand so that your right thumb points in the direction of   ; your fingers then 

curl around the line of    in the same sense as the magnetic field lines, assuming q is 

positive. Figure 16a shows parts of a few field lines; Fig. 16b shows some field lines 

in a plane through q, perpendicular to   . If the point charge is negative, the directions 

of the field and field lines are the opposite of those shown in Fig. 16. 

Equations (12) and (13) describe the     field of a point charge moving with 

constant velocity. If the charge accelerates, the field can be much more complicated. 

We won’t need these more complicated results for our purposes. (The moving 

charged particles that make up a current in a wire accelerate at points where the wire 

bends and the direction of    changes. But because the magnitude    of the drift 

velocity in a conductor is typically very small, the centripetal acceleration    
    is so 

small that we can ignore its effects.) 

As we discussed early, the unit of B is one tesla (1 T): 
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Using this with Eq. (12) or (13), we find that the units of the constant    are 

 

                                  

 

In SI units the numerical value of    is exactly        . Thus 

 

                                                 
 

It may seem incredible that    has exactly this numerical value! In fact this is a 

defined value that arises from the definition of the ampere. 

The constant in Coulomb’s law is related to the speed of light c: 

 

  
 

    
                  

 

When we study electromagnetic waves, we will find that their speed of propagation 

in vacuum, which is equal to the speed of light is given by 

 

   
 

    
 

(14) 

 

If we solve the equation   
 

    
 for   , substitute the resulting expression into Eq. 

(14), and solve for    we indeed get the value of    stated above. This discussion is a 

little premature, but it may give you a hint that electric and magnetic fields are 

intimately related to the nature of light. 

 
1.2.2 Magnetic Field of a Straight Current-Carrying Conductor 
 

Let’s use the law of Biot and Savart to find the magnetic field produced by a 

straight current-carrying conductor. This result is useful because straight conducting 

wires are found in essentially all electric and electronic devices. Figure 17 shows 

such a conductor with length 2a carrying a current I. We will find     at a point a 

distance x from the conductor on its perpendicular bisector. 

We first use the law of Biot and Savart, Eq.   
  

  

       

  
, to find the field      

caused by the element of conductor of length       shown in Fig. 17. From the 

figure,          and               
 

      
. The right-hand rule for the 

vector product        shows that the direction of     is into the plane of the figure, 

perpendicular to the plane; furthermore, the directions of the        from all elements 



26 
 

of the conductor are the same. Thus in integrating Eq.    
  

  
 
           

  
, we can just add 

the magnitudes of the         a significant simplification. 

 

 
Figure 17 – Magnetic produced by a straight current-carrying conductor of 2a 

 

Putting the pieces together, we find that the magnitude of the total     field is 

 

  
   

  
 

   

          

 

  

 

(15) 

 

We can integrate this by trigonometric substitution or by using an integral table: 

 

  
   

  

  

       
 

(16) 

 

When the length 2a of the conductor is very great in comparison to its distance x 

from point P, we can consider it to be infinitely long. When a is much larger than x, 

       is approximately equal to a; hence in the limit    , Eq. (16) becomes 

 

  
   

   
 

(17) 

 

The physical situation has axial symmetry about the y-axis. Hence     must have 

the same magnitude at all points on a circle centered on the conductor and lying in a 

plane perpendicular to it, and the direction of     must be everywhere tangent to such a 
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circle (Fig. 18). Thus, at all points on a circle of radius r around the conductor, the 

magnitude B is 

 

  
   

   
 

(18) 

 

The geometry of this problem is similar to that of Example, in which we solved 

the problem of the electric field caused by an infinite line of charge. The same 

integral appears in both problems, and the field magnitudes in both problems are 

proportional to    . But the lines of     in the magnetic problem have completely 

different shapes than the lines of     in the analogous electrical problem. Electric field 

lines radiate outward from a positive line charge distribution (inward for negative 

charges). By contrast, magnetic field lines encircle the current that acts as their 

source. Electric field lines due to charges begin and end at those charges, but 

magnetic field lines always form closed loops and never have end points, irrespective 

of the shape of the current-carrying conductor that sets up the field. As we discussed 

early, this is a consequence of Gauss’s law for magnetism, which states that the total 

magnetic flux through any closed surface is always zero: 

 

          
(19) 

 

Any magnetic field line that enters a closed surface must also emerge from that 

surface. 

 

 
Figure 18 – Magnetic field around a long, straight, current-carrying conductor. The 

field lines are circles, with directions determined by the right-hand rule 
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1.2.3 Magnetic Field of a Circular Current Loop 

 

If you look inside a doorbell, a transformer, an electric motor, or an 

electromagnet (Fig. 19), you will find coils of wire with a large number of turns, 

spaced so closely that each turn is very nearly a planar circular loop. A current in 

such a coil is used to establish a magnetic field. So it is worthwhile to derive an 

expression for the magnetic field produced by a single circular conducting loop 

carrying a current or by N closely spaced circular loops forming a coil. Early we 

considered the force and torque on such a current loop placed in an external magnetic 

field produced by other currents; we are now about to find the magnetic field 

produced by the loop itself. 

 

 
Figure 19 – This electromagnet contains a current-carrying coil with numerous turns 

of wire. The resulting magnetic field can pick up large quantities of steel bars and 

other iron-bearing items 

 

Figure 20 shows a circular conductor with radius a. A current I is led into and 

out of the loop through two long, straight wires side by side; the currents in these 

straight wires are in opposite directions, and their magnetic fields very nearly cancel 

each other. 
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Figure 20 – Magnetic field on the axis of a circular loop. The current in the segment 

    cause the field     , which lies in the xy-plane. The current in other    ’s cause 

    ’s  with different components perpendicular to the x-axis; these components add to 

zero. The x-components of the     ’s combine to give the total     field at point P 

We can use the law of Biot and Savart, to find the magnetic field at a point P 

on the axis of the loop, at a distance x from the center. As the figure shows,        and    

are perpendicular, and the direction of the field      caused by this particular element 

    lies in the xy-plane. Since          the magnitude dB of the field due to 

element     is 

 

   
   

  

  

       
 

(20) 

 

The components of the vector are 

 

            
   

  

  

       

 

          
 

 

(21) 

            
   

  

  

       

 

          
 

(22) 

 

The total field     at P has only an x-component (it is perpendicular to the plane 

of the loop). Here’s why: For every element     there is a corresponding element on 

the opposite side of the loop, with opposite direction. These two elements give equal 

contributions to the x-component of     given by Eq. (21), but opposite components 

perpendicular to the x-axis. Thus all the perpendicular components cancel and only 

the x-components survive. 
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To obtain the x-component of the total field    , we integrate Eq. (21), including 

all the    ’s around the loop. Everything in this expression except dl is constant and 

can be taken outside the integral, and we have  

 

    
   

  

   

          
 

    

            
    

(23) 

 

The integral of dl is just the circumference of the circle,        , and we 

finally get 

 

   
    

 

           
 

(24) 

 

The direction of the magnetic field on the axis of a current-carrying loop is 

given by a right-hand rule. If you curl the fingers of your right hand around the loop 

in the direction of the current, your right thumb points in the direction of the field 

(Fig. 21). 

 

 
Figure 21 – the right-hand rule for the direction of the magnetic field produced on the 

axis of a current-carrying coil 

 

Magnetic Field on the Axis of a Coil. Now suppose that instead of the single 

loop in Fig. 20 we have a coil consisting of N loops, all with the same radius. The 

loops are closely spaced so that the plane of each loop is essentially the same distance 

x from the field point P. Then the total field is N times the field of a single loop: 

 

   
     

 

           
 

(25) 
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The factor N in Eq. (26) is the reason coils of wire, not single loops, are used to 

produce strong magnetic fields; for a desired field strength, using a single loop might 

require a current I so great as to exceed the rating of the loop’s wire. 

Figure 22 shows a graph of as a function of x. The maximum value of the field 

is at the center of the loop or coil: 

 

   
   

  
 

(26) 

 

As we go out along the axis, the field decreases in magnitude. 

 

 
Figure 22 – Graph of the magnetic field along the axis of a circular coil with   turns. 

When   is much larger than  , the field magnitude decreases approximately as      

 

Soon we defined the magnetic dipole moment (or magnetic moment) of a 

current-carrying loop to be equal to IA, where A is the cross-sectional area of the 

loop. If there are N loops, the total magnetic moment is NIA. The circular loop in Fig. 

20 has area so the magnetic moment of a single loop is for N loops, Substituting these 

results into Eqs. (24) and (25), we find that both of these expressions can be written 

as 

 

   
   

            
 (27) 

 

We described a magnetic dipole other section in terms of its response to a magnetic 

field produced by currents outside the dipole. But a magnetic dipole is also a source 

of magnetic field; Eq. (27) describes the magnetic field produced by a magnetic 

dipole for points along the dipole axis. This field is directly proportional to the 

magnetic dipole moment Note that the field along the x-axis is in the same direction 

as the vector magnetic moment this is true on both the positive and negative x-axis. 
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Figure 23 shows some of the magnetic field lines surrounding a circular current 

loop (magnetic dipole) in planes through the axis. The directions of the field lines are 

given by the same right-hand rule as for a long, straight conductor. Grab the 

conductor with your right hand, with your thumb in the direction of the current; your 

fingers curl around in the same direction as the field lines. The field lines for the 

circular current loop are closed curves that encircle the conductor; they are not 

circles, however. 

 

 
Figure 23 – Magnetic field lines produced by the current in a circular loop. At points 

on the axis the     field has the same direction as the magnetic moment of the loop 

 
1.2.4 Amperes’s force 

 

What makes an electric motor work? Within the motor are conductors that 

carry currents (that is, whose charges are in motion), as well as magnets that exert 

forces on the moving charges. Hence there is a magnetic force along the length of 

each current-carrying conductor, and these forces make the motor turn. The moving-

coil galvanometer also uses magnetic forces on conductors. 

We can compute the force on a current-carrying conductor starting with the 

magnetic force            on a single moving charge. Figure 24 shows a straight 

segment of a conducting wire, with length and cross-sectional area   the current is 

from bottom to top. The wire is in a uniform magnetic field    , perpendicular to the 

plane of the diagram and directed into the plane. Let’s assume first that the moving 

charges are positive. Later we’ll see what happens when they are negative. 

The drift velocity     is upward, perpendicular to    . The average force on each 

charge is             directed to the left as shown in the figure; since and are 

perpendicular, the magnitude of the force is       . 
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Figure 24 – Forces on a moving positive charge in a current-carrying conductor 

 

We can derive an expression for the total force on all the moving charges in a 

length   of conductor with cross-sectional area   using the same language we used in 

Eqs.         and       . The number of charges per unit volume is  ; a 

segment of conductor with length   has volume    and contains a number of charges 

equal to    . The total force    on all the moving charges in this segment has 

magnitude 

 

                          (28) 

 

The current density is       . The product is the total current so we can rewrite 

Eq. (7) as 

 

      (29) 

 

If the field     is not perpendicular to the wire but makes an angle   with it, we 

handle the situation the same way for a single charge. Only the component of     
perpendicular to the wire (and to the drift velocities of the charges) exerts a force; this 

component is         . The magnetic force on the wire segment is then 

 

               (30) 

 

The force is always perpendicular to both the conductor and the field, with the 

direction determined by the same right-hand rule we used for a moving positive 

charge (Fig. 25). Hence this force can be expressed as a vector product, just like the 

force on a single moving charge. We represent the segment of wire with a vector 

along the wire in the direction of the current; then the force on this segment is 
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           (31) 

 

 
Figure 25 – A straight wire segment of length    carries a current   in the direction of 

  . The magnetic force on this segment is perpendicular to both    and the magnetic 

field     
 

Figure 26 illustrates the directions of and for several cases. 

 

 

Figure 26 – Magnetic field    , length   , and force    vectors for a straight wire 

carrying a current   
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If the conductor is not straight, we can divide it into infinitesimal segments    . 

The force     on each segment is 

 

             (32) 

 

Then we can integrate this expression along the wire to find the total force on a 

conductor of any shape. The integral is a line integral, the same mathematical 

operation we have used to define work and electric potential. 

Finally, what happens when the moving charges are negative, such as electrons 

in a metal? Then in Fig. 24 an upward current corresponds to a downward drift 

velocity. But because   is now negative, the direction of the force    is the same as 

before. Thus Eqs. (8) through (11) are valid for both positive and negative charges 

and even when both signs of charge are present at once. This happens in some 

semiconductor materials and in ionic solutions. 

A common application of the magnetic forces on a current-carrying wire is 

found in loudspeakers (Fig. 27). The radial magnetic field created by the permanent 

magnet exerts a force on the voice coil that is proportional to the current in the coil; 

the direction of the force is either to the left or to the right, depending on the direction 

of the current. The signal from the amplifier causes the current to oscillate in 

direction and magnitude. The coil and the speaker cone to which it is attached 

respond by oscillating with an amplitude proportional to the amplitude of the current 

in the coil. Turning up the volume knob on the amplifier increases the current 

amplitude and hence the amplitudes of the cone’s oscillation and of the sound wave 

produced by the moving cone. 

 

 
Figure 27 – (a) Components of a loudspeaker. (b) The permanent magnet creates a 

magnetic field that exerts forces on the current in the voice coil; for a current I in the 

direction shown, the force is to the right. If the electric current in the voice coil 

oscillates, the speaker cone attached to the voice coil oscillates at the same frequency. 
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1.2.5 Magnetic materials 

 

In discussing how currents cause magnetic fields, we have assumed that the 

conductors are surrounded by vacuum. But the coils in transformers, motors, 

generators, and electromagnets nearly always have iron cores to increase the 

magnetic field and confine it to desired regions. Permanent magnets, magnetic 

recording tapes, and computer disks depend directly on the magnetic properties of 

materials; when you store information on a computer disk, you are actually setting up 

an array of microscopic permanent magnets on the disk. So it is worthwhile to 

examine some aspects of the magnetic properties of materials. After describing the 

atomic origins of magnetic properties, we will discuss three broad classes of magnetic 

behavior that occur in materials; these are called paramagnetism, diamagnetism, and 

ferromagnetism. 

The Bohr Magneton. The atoms that make up all matter contain moving 

electrons, and these electrons form microscopic current loops that produce magnetic 

fields of their own. In many materials these currents are randomly oriented and cause 

no net magnetic field. But in some materials an external field (a field produced by 

currents outside the material) can cause these loops to become oriented preferentially 

with the field, so their magnetic fields add to the external field. We then say that the 

material is magnetized. 

 
Figure 28 – An electron moving with speed v in a circular orbit of radius r has an 

angular momentum     and an oppositely directed orbital magnetic dipole moment   . It 
also has a spin angular momentum and an oppositely directed spin magnetic dipole 

moment. 

 

Let’s look at how these microscopic currents come about. Figure 28 shows a 

primitive model of an electron in an atom. We picture the electron (mass m, charge - 

e) as moving in a circular orbit with radius r and speed This moving charge is 

equivalent to a current loop. Early we found that a current loop with area S and 

current I has a magnetic dipole moment μ given by      for the orbiting electron 
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the area of the loop is      . To find the current associated with the electron, we 

note that the orbital period T (the time for the electron to make one complete orbit) is 

the orbit circumference divided by the electron speed:        . The equivalent 

current I is the total charge passing any point on the orbit per unit time, which is just 

the magnitude e of the electron charge divided by the orbital period T: 

 

  
 

 
 
  

   
 

(33) 

 

The magnetic moment      is then 

 

  
  

   
      

   

 
 

(34) 

 

It is useful to express   in terms of the angular momentum L of the electron. For a 

particle moving in a circular path, the magnitude of angular momentum equals the 

magnitude of momentum multiplied by the radius r - that is,      . Comparing 

this with Eq. (34), we can write 

 

 (35) 

  
 

  
  

 

Equation (35) is useful in this discussion because atomic angular momentum is 

quantized; its component in a particular direction is always an integer multiple of 

     where h is a fundamental physical constant called Planck’s constant. The 

numerical value of h is 

 

                  
 

The quantity      thus represents a fundamental unit of angular momentum in 

atomic systems, just as e is a fundamental unit of charge. Associated with the 

quantization of     is a fundamental uncertainty in the direction of     and therefore of   . 
In the following discussion, when we speak of the magnitude of a magnetic moment, 

a more precise statement would be “maximum component in a given direction.” 

Thus, to say that a magnetic moment    is aligned with a magnetic field     really 

means that    has its maximum possible component in the direction of    , such 

components are always quantized. 

Equation (35) shows that associated with the fundamental unit of angular  

momentum is a corresponding fundamental unit of magnetic moment. If       

then 

 

  
 

  
 
 

  
  

  

   
 

(36) 
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This quantity is called the Bohr magneton, denoted by   . Its numerical value is 

 

                                  
 

You should verify that these two sets of units are consistent. The second set is useful 

when we compute the potential energy           for a magnetic moment in a 

magnetic field. 

Electrons also have an intrinsic angular momentum, called spin, that is not 

related to orbital motion but that can be pictured in a classical model as spinning on 

an axis. This angular momentum also has an associated magnetic moment, and its 

magnitude turns out to be almost exactly one Bohr magneton. (Effectshaving to do 

with quantization of the electromagnetic field cause the spin magnetic moment to be 

about          

Paramagnetism. In an atom, most of the various orbital and spin magnetic 

moments of the electrons add up to zero. However, in some cases the atom has a net 

magnetic moment that is of the order of   .. When such a material is placed in a 

magnetic field, the field exerts a torque on each magnetic moment, as given by: 

         . These torques tend to align the magnetic moments with the field. In this 

position, the directions of the current loops are such as to add to the externally 

applied magnetic field. 

We saw that the     field produced by a current loop is proportional to the loop’s 

magnetic dipole moment. In the same way, the additional     field produced by 

microscopic electron current loops is proportional to the total magnetic moment 

        per unit volume V in the material. We call this vector quantity the 

magnetization of the material, denoted by  

 

     
       
 

 
(37) 

 

The additional magnetic field due to magnetization of the material turns out to  

be equal simply to       , where    is the same constant that appears in the law of Biot 

and Savart and Ampere’s law. When such a material completely surrounds a current-

carrying conductor, the total magnetic field in the material is 

 

                (38) 

 

where is      the field caused by the current in the conductor. 

A material showing the behavior just described is said to be paramagnetic. 

The result is that the magnetic field at any point in such a material is greater by a 

dimensionless factor   , called the relative permeability of the material, than it 

would be if the material were replaced by vacuum. The value of    is different for 
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different materials; for common paramagnetic solids and liquids at room temperature, 

   typically ranges from 1.00001 to 1.003. 

All of the equations in this chapter that relate magnetic fields to their sources 

can be adapted to the situation in which the current-carrying conductor is embedded 

in a paramagnetic material. All that need be done is to replace    by      This 

product is usually denoted as and is called the permeability of the material:  

 

       (39) 

 

The amount by which the relative permeability differs from unity is called the 

magnetic susceptibility, denoted by   : 

 

        (40) 

 

Both    and    are dimensionless quantities. Table 1 lists values of magnetic 

susceptibility for several materials. For example, for aluminum,             

and            . The first group of materials in the table are paramagnetic; we’ll 

discuss the second group of materials, which are called diamagnetic, very shortly. 

 

Table 1 – Magnetic susceptibilities of paramagnetic and diamagnetic materials al 

T=20 C 

Material            
    

Paramagnetic 

Iron ammonium alum 66 

Uranium 40 

Platinum 26 

Aluminium 2.2 

Sodium 0.72 

Oxygen gas 0.19 

Diamagnetic 

Bismuth -16.6 

Mercury -2.9 

Silver -2.6 

Carbon (diamond) -2.1 

Lead -1.8 

Sodium chloride -1.4 

Copper -1.0 

 

The tendency of atomic magnetic moments to align themselves parallel to the 

magnetic field (where the potential energy is minimum) is opposed by random 

thermal motion, which tends to randomize their orientations. For this reason, 

paramagnetic susceptibility always decreases with increasing temperature. In many 

cases it is inversely proportional to the absolute temperature T, and the magnetization 

M can be expressed as 
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(41) 

 

This relationship is called Curie’s law, after its discoverer, Pierre Curie (1859–1906). 

The quantity C is a constant, different for different materials, called the Curie 

constant. 

A a body with atomic magnetic dipoles is attracted to the poles of a magnet. In 

most paramagnetic substances this attraction is very weak due to thermal 

randomization of the atomic magnetic moments. But at very low temperatures the 

thermal effects are reduced, the magnetization in creases in accordance with Curie’s 

law, and the attractive forces are greater. 

Diamagnetism. In some materials the total magnetic moment of all the atomic 

current loops is zero when no magnetic field is present. But even these materials have 

magnetic effects because an external field alters electron motions within the atoms, 

causing additional current loops and induced magnetic dipoles comparable to the 

induced electric dipoles we studied early. In this case the additional field caused by 

these current loops is always opposite in direction to that of the external field. 

Such materials are said to be diamagnetic. They always have negative 

susceptibility, as shown in Table 1, and relative permeability slightly less than unity, 

typically of the order of 0.99990 to 0.99999 for solids and liquids. Diamagnetic 

susceptibilities are very nearly temperature independent. 

Ferromagnetism. There is a third class of materials, called ferromagnetic 

materials, that includes iron, nickel, cobalt, and many alloys containing these 

elements. In these materials, strong interactions between atomic magnetic moments 

cause them to line up parallel to each other in regions called magnetic domains, even 

when no external field is present. Figure 29 shows an example of magnetic domain 

structure. Within each domain, nearly all of the atomic magnetic moments are 

parallel. 

When there is no externally applied field, the domain magnetizations are 

randomly oriented. But when a field      (caused by external currents) is present, the 

domains tend to orient themselves parallel to the field. The domain boundaries also 

shift; the domains that are magnetized in the field direction grow, and those that are 

magnetized in other directions shrink. Because the total magnetic moment of a 

domain may be many thousands of Bohr magnetons, the torques that tend to align the 

domains with an external field are much stronger than occur with paramagnetic 

materials. The relative permeability    is much larger than unity, typically of the 

order of 1000 to 100,000. As a result, an object made of a ferromagnetic material 

such as iron is strongly magnetized by the field from a permanent magnet and is 

attracted to the magnet. A paramagnetic material such as aluminum is also attracted 

to a permanent magnet, but    for paramagnetic materials is so much smaller for 

such a material than for ferromagnetic materials that the attraction is very weak. Thus 

a magnet can pick up iron nails, but not aluminum cans. 
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Figure 29 - In this drawing adapted from a magnified photo, the arrows show the 

directions of magnetization in the domains of a single crystal of nickel. Domains that 

are magnetized in the direction of an applied magnetic field grow larger. 

 

As the external field is increased, a point is eventually reached at which nearly 

all the magnetic moments in the ferromagnetic material are aligned parallel to the 

external field. This condition is called saturation magnetization; after it is reached, 

further increase in the external field causes no increase in magnetization or in the 

additional field caused by the magnetization. 

Figure 30 shows a “magnetization curve,” a graph of magnetization M as a 

function of external magnetic field      for soft iron. An alternative description of this 

behavior is that    is not constant but decreases as      increases. (Paramagnetic 

materials also show saturation at sufficiently strong fields. But the magnetic fields 

required are so large that departures from a linear relationship between M and      in 

these materials can be observed only at very low temperatures, 1 K or so.) 
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Figure 30 - A magnetization curve for a ferromagnetic material. The magnetization M 

approaches its saturation value      as the magnetic field    (caused by external 

currents) becomes large. 

 

For many ferromagnetic materials the relationship of magnetization to external 

magnetic field is different when the external field is increasing from when it is 

decreasing. Figure 31a shows this relationship for such a material. When the material 

is magnetized to saturation and then the external field is reduced to zero, some 

magnetization remains. This behavior is characteristic of permanent magnets, which 

retain most of their saturation magnetization when the magnetizing field is removed. 

To reduce the magnetization to zero requires a magnetic field in the reverse direction.  

This behavior is called hysteresis, and the curves in Fig. 31 are called 

hysteresis loops. Magnetizing and demagnetizing a material that has hysteresis 

involve the dissipation of energy, and the temperature of the material increases during 

such a process. 

Ferromagnetic materials are widely used in electromagnets, transformer cores, 

and motors and generators, in which it is desirable to have as large a magnetic field as 

possible for a given current. Because hysteresis dissipates energy, materials that are 

used in these applications should usually have as narrow a hysteresis loop as possible. 

Soft iron is often used; it has high permeability without appreciable hysteresis. For 

permanent magnets a broad hysteresis loop is usually desirable, with large zero-field 

magnetization and large reverse field needed to demagnetize. Many kinds of steel and 

many alloys, such as Alnico, are commonly used for permanent magnets. The 

remaining magnetic field in such a material, after it has been magnetized        

to near saturation, is typically of the order of 1 T, corresponding to a remaining 

magnetization of about 800,000 A/m. 
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Figure 31 - Hysteresis loops. The materials of both (a) and (b) remain strongly 

magnetized when is reduced to zero. Since (a) is also hard to demagnetize, it would 

be good for permanent magnets. Since (b) magnetizes and demagnetizes more easily, 

it could be used as a computer memory material. The material of (c) would be useful 

for transformers and other alternating-current devices where zero hysteresis would be 

optimal. 

 
Discussion questions 

1. A topic of current interest in physics research is the search (thus far 

unsuccessful) for an isolated magnetic pole, or magnetic monopole. If such an 

entity were found, how could it be recognized? What would its properties be? 

2. Streams of charged particles emitted from the sun during periods of solar 

activity create a disturbance in the earth’s magnetic field. How does this 

happen? 

3. The text discussed the magnetic field of an infinitely long, straight conductor 

carrying a current. Of course, there is no such thing as an infinitely long 
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anything. How do you decide whether a particular wire is long enough to be 

considered infinite? 

4. Two parallel conductors carrying current in the same direction attract each 

other. If they are permitted to move toward each other, the forces of attraction 

do work. From where does the energy come? 

5. Pairs of conductors carrying current into or out of the powersupply 

components of electronic equipment are sometimes twisted together to reduce 

magnetic-field effects. Why does this help?  

6. Suppose you have three long, parallel wires arranged so that in cross section 

they are at the corners of an equilateral triangle. Is there any way to arrange the 

currents so that all three wires attracteach other? So that all three wires repel 

each other? Explain. 

7. Two concentric, coplanar, circular loops of wire of different diameter carry 

currents in the same direction. Describe the nature of the force exerted on the 

inner loop by the outer loop and on the outer loop by the inner loop. 

8. A current was sent through a helical coil spring. The spring contracted, as 

though it had been compressed. Why? 

9. What are the relative advantages and disadvantages of Ampere’s law and the 

law of Biot and Savart for practical calculations of magnetic fields? 

10. Magnetic field lines never have a beginning or an end. Use this to explain why 

it is reasonable for the field of a toroidal solenoid to be confined entirely to its 

interior, while a straight solenoid must have some field outside. 

11. If the magnitude of the magnetic field a distance R from a very long, straight, 

current-carrying wire is B, at what distance from the wire will the field have 

magnitude 3B? 

12. Two very long, parallel wires carry equal currents in opposite directions. (a) Is 

there any place that their magnetic fields completely cancel? If so, where? If 

not, why not? (b) How would the answer to part (a) change if the currents were 

in the same direction? 

13. A metal ring carries a current that causes a magnetic field at the center of the 

ring and a field B at point P a distance x from the center along the axis of the 

ring. If the radius of the ring is doubled, find the magnetic field at the center. 

Will the field at point P change by the same factor? Why? 

14. Why should the permeability of a paramagnetic material be expected to 

decrease with increasing temperature? 

15. If a magnet is suspended over a container of liquid air, it attracts droplets to its 

poles. The droplets contain only liquid oxygen; even though nitrogen is the 

primary constituent of air, it is not attracted to the magnet. Explain what this 

tells you about the magnetic susceptibilities of oxygen and nitrogen, and 

explain why a magnet in ordinary, room-temperature air doesn’t attract 

molecules of oxygen gas to its poles. 

16. What features of atomic structure determine whether an element is diamagnetic 

or paramagnetic? Explain. 
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17. The magnetic susceptibility of paramagnetic materials is quite strongly 

temperature dependent, but that of diamagnetic materials is nearly independent 

of temperature. Why the difference? 

18. A cylinder of iron is placed so that it is free to rotate around its axis. Initially 

the cylinder is at rest, and a magnetic field is applied to the cylinder so that it is 

magnetized in a direction parallel to its axis. If the direction of the external 

field is suddenly reversed, the direction of magnetization will also reverse and 

the cylinder will begin rotating around its axis. (This is called the Einstein–de 

Haas effect.) Explain why the cylinder begins to rotate. 

 
1.3 Electromagnetic induction and inductance 

 

1.3.1 Induction experiments 
 

During the 1830s, several pioneering experiments with magnetically induced 

emf were carried out in England by Michael Faraday and in the United States by 

Joseph Henry (1797–1878), later the first director of the Smithsonian Institution. 

Figure 32 shows several examples. In Fig. 32a, a coil of wire is connected to a 

galvanometer. When the nearby magnet is stationary, the meter shows no current. 

This isn’t surprising; there is no source of emf in the circuit. But when we move the 

magnet either toward or away from the coil, the meter shows current in the circuit, 

but only while the magnet is moving (Fig. 32b). If we keep the magnet stationary and 

move the coil, we again detect a current during the motion. We call this an induced 

current, and the corresponding emf required to cause this current is called an 

induced emf. 

 

 
Figure 32 – Demonstrating the phenomenon of induced current 

 

In Fig. 32c we replace the magnet with a second coil connected to a battery. 

When the second coil is stationary, there is no current in the first coil. However, 

when we move the second coil toward or away from the first or move the first toward 

or away from the second, there is current in the first coil, but again only while one 

coil is moving relative to the other. 
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Finally, using the two-coil setup in Fig. 32d, we keep both coils stationary and 

vary the current in the second coil, either by opening and closing the switch or by 

changing the resistance of the second coil with the switch closed (perhaps by 

changing the second coil’s temperature). We find that as we open or close the switch, 

there is a momentary current pulse in the first circuit. When we vary the resistance 

(and thus the current) in the second coil, there is an induced current in the first circuit, 

but only while the current in the second circuit is changing. 

To explore further the common elements in these observations, let’s consider a 

more detailed series of experiments (Fig. 33). We connect a coil of wire to a 

galvanometer and then place the coil between the poles of an electromagnet whose 

magnetic field we can vary. Here’s what we observe: 

1. When there is no current in the electromagnet, so that       the 

galvanometer shows no current. 

2. When the electromagnet is turned on, there is a momentary current through 

the meter as     increases. 

3. When     levels off at a steady value, the current drops to zero, no matter how 

large     is. 

4. With the coil in a horizontal plane, we squeeze it so as to decrease the cross-

sectional area of the coil. The meter detects current only during the 

deformation, not before or after. When we increase the area to return the coil to 

its original shape, there is current in the opposite direction, but only while the 

area of the coil is changing. 

5. If we rotate the coil a few degrees about a horizontal axis, the meter detects 

current during the rotation, in the same direction as when we decreased the 

area. When we rotate the coil back, there is a current in the opposite direction 

during this rotation. 

6. If we jerk the coil out of the magnetic field, there is a current during the 

motion, in the same direction as when we decreased the area. 

7. If we decrease the number of turns in the coil by unwinding one or more 

turns, there is a current during the unwinding, in the same direction as when we 

decreased the area. If we wind more turns onto the coil, there is a current in the 

opposite direction during the winding. 

8. When the magnet is turned off, there is a momentary current in the direction 

opposite to the current when it was turned on. 

9. The faster we carry out any of these changes, the greater the current. 

10. If all these experiments are repeated with a coil that has the same shape but 

different material and different resistance, the current in each case is inversely 

proportional to the total circuit resistance. This shows that the induced emfs 

that are causing the current do not depend on the material of the coil but only 

on its shape and the magnetic field. 

The common element in all these experiments is changing magnetic flux    

through the coil connected to the galvanometer. In each case the flux changes either 

because the magnetic field changes with time or because the coil is moving through a 

nonuniform magnetic field. Faraday’s law of induction, the subject of the next 



47 
 

section, states that in all of these situations the induced emf is proportional to the rate 

of change of magnetic flux    through the coil. The direction of the induced emf 

depends on whether the flux is increasing or decreasing. If the flux is constant, there 

is no induced emf. 

Induced emfs are not mere laboratory curiosities but have a tremendous 

number of practical applications. If you are reading these words indoors, you are 

making use of induced emfs right now! At the power plant that supplies your 

neighborhood, an electric generator produces an emf by varying the magnetic flux 

through coils of wire. (In the next section we’ll see in detail how this is done.) This 

emf supplies the voltage between the terminals of the wall sockets in your home, and 

this voltage supplies the power to your reading lamp. Indeed, any appliance that you 

plug into a wall socket makes use of induced emfs. 

Magnetically induced emfs are the result of nonelectrostatic forces. We have to 

distinguish carefully between the electrostatic electric fields produced by charges 

(according to Coulomb’s law) and the nonelectrostatic electric fields produced by 

changing magnetic fields. We’ll return to this distinction later in this chapter and the 

next. 

 
Figure 33 – A coil in a magnetic field. When the     field is constant and the shape, 

location, and orientation of the coil do not change, no current is induced in the coil. 

Acurrent is induced when any of these factors change 

 
1.3.2 Faraday’s law and Lenz’s law 
 

The common element in all induction effects is changing magnetic flux 

through a circuit. Before stating the simple physical law that summarizes all of the 
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kinds of experiments described early, let’s first review the concept of magnetic flux 

  . For an infinitesimalarea element     in a magnetic field     (Fig. 34), the magnetic 

flux     through the area is 

 

                         (42) 

 

where    is the component of     perpendicular to the surface of the area element and 

  is the angle between     and    . 
 

 
Figure 34 - Calculating the magnetic flux through an area element 

 

                     
(43) 

 

If     is uniform over a flat area   , then 

 

                   (44) 

 

Figure 35 reviews the rules for using Eq. (44). 

Faraday’s law of induction states: 

The induced emf in a closed loop equals the negative of the time rate of 

change of magnetic flux through the loop. 

In symbols, Faraday’s law is 

 

   
   

  
 

 (45) 
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To understand the negative sign, we have to introduce a sign convention for the 

induced emf   . But first let’s look at a simple example of this law in action. 

 

 

 
Figure 35 - Calculating the flux of a uniform magnetic field through a flat area.  

The total magnetic flux    through a finite area is the integral of this expression over 

the area: 

Lenz’s law is a convenient alternative method for determining the direction of 

an induced current or emf. Lenz’s law is not an independent principle; it can be 

derived from Faraday’s law. It always gives the same results as the sign rules we 

introduced in connection with Faraday’s law, but it is often easier to use. Lenz’s law 

also helps us gain intuitive understanding of various induction effects and of the role 

of energy conservation. H. F. E. Lenz (1804–1865) was a Russian scientist who 

duplicated independently many of the discoveries of Faraday and Henry. Lenz’s law 

states: 

The direction of any magnetic induction effect is such as to oppose the 

cause of the effect. 



50 
 

The “cause” may be changing flux through a stationary circuit due to a varying 

magnetic field, changing flux due to motion of the conductors that make up the 

circuit, or any combination. If the flux in a stationary circuit changes, the induced 

current sets up a magnetic field of its own. Within the area bounded by the circuit, 

this field is opposite to the original field if the original field is increasing but is in the 

same direction as the original field if the latter is decreasing. That is, the induced 

current opposes the change in flux through the circuit (not the flux itself). 

If the flux change is due to motion of the conductors the direction of the 

induced current in the moving conductor is such that the direction of the magnetic-

field force on the conductor is opposite in direction to its motion. Thus the motion of 

the conductor, which caused the induced current, is opposed. 

Lenz’s law is also directly related to energy conservation.  

 

1.3.3 Induced electric field. Eddy currents 
 

When a conductor moves in a magnetic field, we can understand the induced 

emf on the basis of magnetic forces on charges in the conductor. But an induced emf 

also occurs when there is a changing flux through a stationary conductor. What is it 

that pushes the charges around the circuit in this type of situation? 

As an example, let’s consider the situation shown in Fig. 36. A long, thin 

solenoid with cross-sectional area A and turns per unit length is encircled at its center 

by a circular conducting loop. The galvanometer G measures the current in the loop. 

A current I in the winding of the solenoid sets up a magnetic field     along the 

solenoid axis, as shown, with magnitude B as calculated early:       , where n is 

the number of turns per unit length. 

 

 
Figure 36 - (a) The windings of a long solenoid carry a current I that is increasing at a 

rate      . The magnetic flux in the solenoid is increasing at a rate 
   

  
 and this 

changing flux passes through a wire loop. An emf     
   

  
 is induced in the loop, 
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inducing a current    that is measured by the galvanometer G. (b) Cross-sectional 

view. 

 

If we neglect the small field outside the solenoid and take the area vector    to point in 

the same direction as    , then the magnetic flux    through the loop is 

 

            (46) 

 

When the solenoid current I changes with time, the magnetic flux    also changes, 

and according to Faraday’s law the induced emf in the loop is given by 

 

   
   

  
      

  

  
 

(47) 

 

If the total resistance of the loop is R, the induced current in the loop, which we may 

call   , is        

But what force makes the charges move around the wire loop? It can’t be a 

magnetic force because the loop isn’t even in a magnetic field. We are forced to 

conclude that there has to be an induced electric field in the conductor caused by the 

changing magnetic flux. This may be a little jarring; we are accustomed to thinking 

about electric field as being caused by electric charges, and now we are saying that a 

changing magnetic field somehow acts as a source of electric field. Furthermore, it’s 

a strange sort of electric field. When a charge q goes once around the loop, the total 

work done on it by the electric field must be equal to q times the emf  . That is, the 

electric field in the loop is not conservative, because the line integral of     around a 

closed path is not zero. Indeed, this line integral, representing the work done by the 

induced     field per unit charge, is equal to the induced emf  : 

 

            
(48) 

 

 

From Faraday’s law the emf   is also the negative of the rate of change of magnetic 

flux through the loop. Thus for this case we can restate Faraday’s law as 

 

          
   

  
 

(49) 

 

Note that Faraday’s law is always true in the form the form    
   

  
 given in Eq. 

(49) is valid only if the path around which we integrate is stationary. 

As an example of a situation to which Eq. (49) can be applied, consider the 

stationary circular loop in Fig. 36b, which we take to have radius r. Because of 

cylindrical symmetry, the electric field     has the same magnitude at every point on 
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the circle and is tangent to it at each point. (Symmetry would also permit the field to 

be radial, but then Gauss’s law would require the presence of a net charge inside the 

circle, and there is none.) The line integral in Eq. (49) becomes simply the magnitude 

E times the circumference     of the loop,              and Eq. (49) gives 

 

  
 

   
 
   

  
  

(50) 

 

The directions of     at points on the loop are shown in Fig. 36b. We know that     has 

to have the direction shown when     in the solenoid is increasing, because          has 

to be negative when 
   

  
 is positive. The same approach can be used to find the 

induced electric field inside the solenoid when the solenoid     field is changing; we 

leave the details to you. 

Now let’s summarize what we’ve learned. Faraday’s law, Eq. (45), is valid for 

two rather different situations. In one, an emf is induced by magnetic forces on 

charges when a conductor moves through a magnetic field. In the other, a time-

varying magnetic field induces an electric field in a stationary conductor and hence 

induces an emf; in fact, the     field is induced even when no conductor is present. 

This     field differs from an electrostatic field in an important way. It is 

nonconservative; the line integral          around a closed path is not zero, and when 

a charge moves around a closed path, the field does a nonzero amount of work on it. 

It follows that for such a field the concept of potential has no meaning. We call such 

a field a nonelectrostatic field. In contrast, an electrostatic fieldis always 

conservative and always has an associated potential function. Despite this difference, 

the fundamental effect of any electric field is to exert a force         on a charge q. 

This relationship is valid whether     is a conservative field produced by a charge 

distribution or a nonconservative field caused by changing magnetic flux. 

So a changing magnetic field acts as a source of electric field of a sort that we 

cannot produce with any static charge distribution. This may seem strange, but it’s 

the way nature behaves. What’s more that a changing electric field acts as a source of 

magnetic field. We’ll explore this symmetry between the two fields in greater detail 

in our study of electromagnetic waves. 

If any doubt remains in your mind about the reality of magnetically induced 

electric fields, consider a few of the many practical applications. Pickups in electric 

guitars use currents induced in stationary pickup coils by the vibration of nearby 

ferromagnetic strings. Alternators in most cars use rotating magnets to induce 

currents in stationary coils. Whether we realize it or not, magnetically induced 

electric fields play an important role in everyday life. 

In the examples of induction effects that we have studied, the induced currents 

have been confined to well-defined paths in conductors and other components 

forming a circuit. However, many pieces of electrical equipment contain masses of 

metal moving in magnetic fields or located in changing magnetic fields. In situations 
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like these we can have induced currents that circulate throughout the volume of a 

material. Because their flow patterns resemble swirling eddies in a river, we call these 

eddy currents. 

As an example, consider a metallic disk rotating in a magnetic field 

perpendicular to the plane of the disk but confined to a limited portion of the disk’s 

area, as shown in Fig. 37a. Sector Ob is moving across the field and has an emf 

induced in it. Sectors Oa and Oc are not in the field, but they provide return 

conducting paths for charges displaced along Ob to return from b to O. The result is a 

circulation of eddy currents in the disk, somewhat as sketched in Fig. 37b. 

 

 
Figure 37 - Eddy currents induced in a rotating metal disk 

 

We can use Lenz’s law to decide on the direction of the induced current in the 

neighborhood of sector Ob. This current must experience a magnetic force         

    that opposes the rotation of the disk, and so this force must be to the right in Fig. 

37b. Since     is directed into the plane of the disk, the current and hence     have 

downward components. The return currents lie outside the field, so they do not 

experience magnetic forces. The interaction between the eddy currents and the field 

causes a braking action on the disk. Such effects can be used to stop the rotation of a 

circular saw quickly when the power is turned off. Some sensitive balances use this 

effect to damp out vibrations. Eddy current braking is used on some electrically 

powered rapid-transit vehicles. Electromagnets mounted in the cars induce eddy 

currents in the rails; the resulting magnetic fields cause braking forces on the 

electromagnets and thus on the cars. 

Eddy currents have many other practical uses. The shiny metal disk in the 

electric power company’s meter outside your house rotates as a result of eddy 

currents. These currents are induced in the disk by magnetic fields caused by 

sinusoidally varying currents in a coil. In induction furnaces, eddy currents are used 

to heat materials in completely sealed containers for processes in which it is essential 

to avoid the slightest contamination of the materials. The metal detectors used at 
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airport security checkpoints operate by detecting eddy currents induced in metallic 

objects. Similar devices are used to find buried treasure such as bottlecaps and lost 

pennies. 

Eddy currents also have undesirable effects. In an alternating-current 

transformer, coils wrapped around an iron core carry a sinusoidally varying current. 

The resulting eddy currents in the core waste energy through heating and themselves 

set up an unwanted opposing emf in the coils. To minimize these effects, the core is 

designed so that the paths for eddy currents are as narrow as possible. We’ll describe 

how this is done when we discuss transformers. 

 

1.3.4 Magnetic-field energy 
 

Take a length of copper wire and wrap it around a pencil to form a coil. If you 

put this coil in a circuit, does it behave any differently than a straight piece of wire? 

Remarkably, the answer is yes. In an ordinary gasoline-powered car, a coil of this 

kind makes it possible for the 12-volt car battery to provide thousands of volts to the 

spark plugs, which in turn makes it possible for the plugs to fire and make the engine 

run. Other coils of this type are used to keep fluorescent light fixtures shining. Larger 

coils placed under city streets are used to control the operation of traffic signals. All 

of these applications, and many others, involve the induction. 

A changing current in a coil induces an emf in an adjacent coil. The coupling 

between the coils is described by their mutual inductance. A changing current in a 

coil also induces an emf in that same coil. Such a coil is called an inductor, and the 

relationship of current to emf is described by the inductance (also called 

selfinductance) of the coil. If a coil is initially carrying a current, energy is released 

when the current decreases; this principle is used in automotive ignition systems. 

We’ll find that this released energy was stored in the magnetic field caused by the 

current that was initially in the coil, and we’ll look at some of the practical 

applications of magnetic-field energy. 
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Figure 38 - A current    in coil 1 gives rise to a magnetic flux through coil 2 

 

Early we considered the magnetic interaction between two wires carrying 

steady currents; the current in one wire causes a magnetic field, which exerts a force 

on the current in the second wire. But an additional interaction arises between two 

circuits when there is a changing current in one of the circuits. Consider two 

neighboring coils of wire, as in Fig. 38. A current flowing in coil 1 produces a 

magnetic field     and hence a magnetic flux through coil 2. If the current in coil 1 

changes, the flux through coil 2 changes as well; according to Faraday’s law, this 

induces an emf in coil 2. In this way, a change in the current in one circuit can induce 

a current in a second circuit. 

Let’s analyze the situation shown in Fig. 38 in more detail. We will use 

lowercase letters to represent quantities that vary with time; for example, a 

timevarying current is often with a subscript to identify the circuit. In Fig. 38 a 

current in coil 1 sets up a magnetic field (as indicated by the blue lines), and some of 

these field lines pass through coil 2. We denote the magnetic flux through each turn 

of coil 2, caused by the current    in coil 1, as     (If the flux is different through 

different turns of the coil, then denotes the average flux.) The magnetic field is 

proportional to    so     is also proportional to   . When    changes,     changes; 

this changing flux induces an emf    in coil 2, given by 

 

      
    

  
 

(51) 
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We could represent the proportionality of     and    in the form     
            , but instead it is more convenient to include the number of turns    in 

the relationship. Introducing a proportionality constant     called the mutual 

inductance of the two coils, we write 

 

            (52) 
 

Where     is the flux through a single turn of coil 2. From this, 

 

  
    

  
    

   
  

 
(53) 

 

and we can rewrite Eq. (51) as 

 

       

   
  

 
(54) 

 

That is, a change in the current in coil 1 induces an emf in coil 2 that is directly 

proportional to the rate of change of   . 

We may also write the definition of mutual inductance, Eq. (52), as 

 

    
     

  
 

(55) 

 

If the coils are in vacuum, the flux     through each turn of coil 2 is directly 

proportional to the current   . Then the mutual inductance     is a constant that 

depends only on the geometry of the two coils (the size, shape, number of turns, and 

orientation of each coil and the separation between the coils). If a magnetic material 

is present,     also depends on the magnetic properties of the material. If the 

material has nonlinear magnetic properties - that is, if the relative permeability    is 

not constant and magnetization is not proportional to magnetic field – then     is no 

longer directly proportional to   . In that case the mutual inductance also depends on 

the value of In this discussion we will assume that any magnetic material present has 

constant    so that flux is directly proportional to current and     depends on 

geometry only. 

We can repeat our discussion for the opposite case in which a changing current 

in coil 2 causes a changing flux     and an emf    in coil 1. We might expect that 

the corresponding constant     would be different from     because in general the 

two coils are not identical and the flux through them is not the same. It turns out, 

however, that     is always equal to     even when the two coils are not symmetric. 

We call this common value simply the mutual inductance, denoted by the symbol M 

without subscripts; it characterizes completely the induced-emf interaction of two 

coils. Then we can write 
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(56) 

 

where the mutual inductance M is 

 

  
     

  
 
     

  
 

(57) 

 

The negative signs in Eq. (56) are a reflection of Lenz’s law. The first equation 

says that a change in current in coil 1 causes a change in flux through coil 2, inducing 

an emf in coil 2 that opposes the flux change; in the second equation the roles of the 

two coils are interchanged. 

The SI unit of mutual inductance is called the henry (1 H), in honor of the 

American physicist Joseph Henry (1797–1878), one of the discoverers of 

electromagnetic induction. From Eq. (57), one henry is equal to one weber per 

ampere. Other equivalent units, obtained by using Eq. (56), are one volt-second per 

ampere, one ohm-second, and one joule per ampere squared: 

 

     
  

 
     

 

 
              

 

Establishing a current in an inductor requires an input of energy, and an 

inductor carrying a current has energy stored in it. Let’s see how this comes about. In 

Fig. 39, an increasing current i in the inductor causes an emf between its terminals 

and a corresponding potential difference     between the terminals of the source, 

with point a at higher potential than point b. Thus the source must be adding energy 

to the inductor, and the instantaneous power (rate of transfer of energy into the 

inductor) is       . 
 

 
Figure 39 – A circuit containing a source of emf and an inductor. The source is 

variable, so the current   and its rate of change 
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We can calculate the total energy input   needed to establish a final current   in an 

inductor with inductance   if the initial current is zero. We assume that the inductor 

has zero resistance, so no energy is dissipated within the inductor. Let the current at 

some instant be i and let its rate of change be       the current is increasing, so 

       . The voltage between the terminals a and b of the inductor at this instant is 

            and the rate   at which energy is being delivered to the inductor 

(equal to the instantaneous power supplied by the external source) is 

 

                (58) 

 

The energy dU supplied to the inductor during an infinitesimal time interval dt 

Is        so 

 

         (59) 

 

The total energy   supplied while the current increases from zero to a final value   is  

 

       

 

 

 
 

 
    

(60) 

 

After the current has reached its final steady value           and no more 

energy is input to the inductor. When there is no current, the stored energy   is zero; 

when the current is  , the energy is 
 

 
   . 

When the current decreases from to zero, the inductor acts as a source that 

supplies a total amount of energy 
 

 
    to the external circuit. If we interrupt the 

circuit suddenly by opening a switch or yanking a plug from a wall socket, the 

current decreases very rapidly, the induced emf is very large, and the energy may be 

dissipated in an arc across the switch contacts. This large emf is the electrical analog 

of the large force exerted by a car running into a brick wall and stopping very 

suddenly. 

 
Discussion questions 

1. In an electric trolley or bus system, the vehicle’s motor draws current from an 

overhead wire by means of a long arm with an attachment at the end that slides 

along the overhead wire. Abrilliant electric spark is often seen when the 

attachment crosses a junction in the wires where contact is momentarily lost. 

Explain this phenomenon. 

2. The tightly wound toroidal solenoid is one of the few configurations for which 

it is easy to calculate self-inductance. What features of the toroidal solenoid 

give it this simplicity? 

3. Two identical, closely wound, circular coils, each having self-inductance are 

placed next to each other, so that they are coaxial and almost touching. If they 
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are connected in series, what is the self-inductance of the combination? What if 

they are connected in parallel? Can they be connected so that the total 

inductance is zero? Explain. 

4. Two closely wound circular coils have the same number of turns, but one has 

twice the radius of the other. How are the selfinductances of the two coils 

related? Explain your reasoning. 

5. You are to make a resistor by winding a wire around a cylindrical form. To 

make the inductance as small as possible, it is proposed that you wind half the 

wire in one direction and the other half in the opposite direction. Would this 

achieve the desired result? Why or why not? 

6. In the R-L circuit, when switch is closed, the potential changes suddenly and 

discontinuously,but the current does not. Explain why the voltage can change 

suddenly but the current can’t. 

7. In the R-L circuit is the current in the resistor always the same as the current in 

the inductor? How do you know? 

8. Suppose there is a steady current in an inductor. If you attempt to reduce the 

current to zero instantaneously by quickly opening a switch, an arc can appear 

at the switch contacts. Why? Is it physically possible to stop the current 

instantaneously? Explain. 

9. In an L-R-C series circuit, what criteria could be used to decide whether the 

system is overdamped or underdamped? For example, could we compare the 

maximum energy stored during one cycle to the energy dissipated during one 

cycle? Explain. 

 
1.4 Electromagnetic oscillations and waves 

 
1.4.1 The R-L circuit 

 

Let’s look at some examples of the circuit behavior of an inductor. One thing is 

clear already; an inductor in a circuit makes it difficult for rapid changes in current to 

occur, thanks to the effects of self-induced emf. Equation     
  

  
 shows that the 

greater the rate of change of current      , the greater the self-induced emf and the 

greater the potential difference between the inductor terminals. This equation, 

together with Kirchhoff’s rules, gives us the principles we need to analyze circuits 

containing inductors. 

 



60 
 

 
Figure 40 – An R-L circuit 

 

We can learn several basic things about inductor behavior by analyzing the 

circuit of Fig. 40. A circuit that includes both a resistor and an inductor, and possibly 

a source of emf, is called an R-L circuit. The inductor helps to prevent rapid changes 

in current, which can be useful if a steady current is required but the external source 

has a fluctuating emf. The resistor R may be a separate circuit element, or it may be 

the resistance of the inductor windings; every real-life inductor has some resistance 

unless it is made of superconducting wire. By closing switch we can connect the R-L 

combination to a source with constant emf  . (We assume that the source has zero 

internal resistance, so the terminal voltage equals the emf.) 

Suppose both switches are open to begin with, and then at some initial time 

    we close switch   . The current cannot change suddenly from zero to some 

final value, since       and the induced emf in the inductor would both be infinite. 

Instead, the current begins to grow at a rate that depends only on the value of   in the 

circuit. 

Let i be the current at some time t after switch    is closed, and let       be its 

rate of change at that time. The potential difference     across the resistor at that time 

is 

 

       (61) 

 

and the potential difference     across the inductor is 

 

     
  

  
 

(62) 
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Note that if the current is in the direction shown in Fig. 40 and is increasing, then 

both and are positive; a is at a higher potential than b, which in turn is at a higher 

potential than c. We apply Kirchhoff’s loop rule, starting at the negative terminal and 

proceeding counterclockwise around the loop: 

 

      
  

  
   

(63) 

 

Solving this for       we find that the rate of increase of current is 

 
  

  
 
    

 
 
 

 
 
 

 
  

(64) 

 

At the instant that switch    is first closed,     and the potential drop across 

  is zero. The initial rate of change of current is 

 

 
  

  
 
       

 
 

 
 

(65) 

 

As we would expect, the greater the inductance  , the more slowly the current 

increases. 

As the current increases, the term        in Eq. (64) also increases, and the 

rate of increase of current given by Eq. (64) becomes smaller and smaller. This 

means that the current is approaching a final, steady-state value  . When the current 

reaches this value, its rate of increase is zero. Then Eq. (64) becomes 

 

 
  

  
 
     

   
 

 
 
 

 
  

and 

  
 

 
 

(66) 

 
 

(67) 

 

The final current   does not depend on the inductance   it is the same as it would be 

if the resistance   alone were connected to the source with emf  . 
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Figure 41 - Graph of i versus t for growth of current in an R-L circuit with an emf in 

series. The final current is      ; after one time constant  , the current is       

of this value 

 

Figure 41 shows the behavior of the current as a function of time. To derive the 

equation for this curve (that is, an expression for current as a function of time), we 

proceed just as we did for the charging capacitor. First we rearrange Eq. (64) to the 

form 

 
  

       
  

 

 
   

(68) 

 

This separates the variables, with i on the left side and t on the right. Then we 

integrate both sides, renaming the integration variables    andt    so that we can use i 

and t as the upper limits. (The lower limit for each integral is zero, corresponding to 

zero current at the initial time    ). We get 

 

 
   

    
 
  

  

 

   
 

 

 

 

    

 
 

(69) 

 

(70) 
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Now we take exponentials of both sides and solve for i. We leave the details for you 

to work out; the final result is 

 

  
 

 
    

  
 
 
  
  

(71) 

 

This is the equation of the curve in Fig. 41. Taking the derivative of Eq. (71), 

we find 

 
  

  
 
 

 
 
  
 
 
  

 
(72) 

 

At time         and 
  

  
    . As           and        , as we 

predicted. 

As Fig. 41 shows, the instantaneous current i first rises rapidly, then increases 

more slowly and approaches the final value       asymptotically. At a time equal 

to    , the current has risen to        , or about 63%, of its final value. The 

quantity     is therefore a measure of how quickly the current builds toward its final 

value; this quantity is called the time constant for the circuit, denoted by  : 
 

  
 

 
 

(73) 

 

In a time equal to    the current reaches 86% of its final value; i n   , 99.3%; and in 

   , 99.995%.  

The graphs of i versus t have the same general shape for all values of  . For a 

given value of  , the time constant   is greater for greater values of  . When   is 

small, the current rises rapidly to its final value; when   is large, it rises more slowly. 

For example, if         and        

 

  
 

 
 
    

     
        

(74) 

 

and the current increases to about 63% of its final value in 0.10 s. But if         , 

              , and the rise is much more rapid. 

Energy considerations offer us additional insight into the behavior of an R-L 

circuit. The instantaneous rate at which the source delivers energy to the circuit is 

    . The instantaneous rate at which energy is dissipated in the resistor is    , 
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and the rate at which energy is stored in the inductor is               [or, 

equivalently,        
 

 
             ]. When we multiply Eq. (63) by i and 

rearrange, we find 

 

         
  

  
 

(75) 

 

Of the power    supplied by the source, part       is dissipated in the resistor and 

part    
  

  
  goes to store energy in the inductor. This discussion is completely 

analogous to our power analysis for a charging capacitor. 

 

1.4.2 The L-C circuit 
 

A circuit containing an inductor and a capacitor shows an entirely new mode of 

behavior, characterized by oscillating current and charge. This is in sharp contrast to 

the exponential approach to a steady-state situation that we have seen with both R-C 

and R-L circuits. In the L-C circuit in Fig. 42a we charge the capacitor to a potential 

difference and initial charge       on its left-hand plate and then close the switch. 

What happens? 

The capacitor begins to discharge through the inductor. Because of the induced 

emf in the inductor, the current cannot change instantaneously; it starts at zero and 

eventually builds up to a maximum value   . During this buildup the capacitor is 

discharging. At each instant the capacitor potential equals the induced emf, so as the 

capacitor discharges, the rate of change of current decreases. When the capacitor 

potential becomes zero, the induced emf is also zero, and the current has leveled off 

at its maximum value   . Figure 42b shows this situation; the capacitor has 

completely discharged. The potential difference between its terminals (and those of 

the inductor) has decreased to zero, and the current has reached its maximum value 

  . 

During the discharge of the capacitor, the increasing current in the inductor has 

established a magnetic field in the space around it, and the energy that was initially 

stored in the capacitor’s electric field is now stored in the inductor’s magnetic field. 

Although the capacitor is completely discharged in Fig. 42b, the current 

persists (it cannot change instantaneously), and the capacitor begins to charge with 

polarity opposite to that in the initial state. As the current decreases, the magnetic 

field also decreases, inducing an emf in the inductor in the same direction as the 

current; this slows down the decrease of the current. Eventually, the current and the 

magnetic field reach zero, and the capacitor has been charged in the sense opposite to 

its initial polarity (Fig. 42c), with potential difference     and charge    on its left-

hand plate. 
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Figure 42 - In an oscillating L-C circuit, the charge on the capacitor and the current 

through the inductor both vary sinusoidally with time. Energy is transferred between 

magnetic energy in the inductor    and electric energy in the capacitor   . As in 

simple harmonic motion, the total energy E remains constant 

 

The process now repeats in the reverse direction; a little later, the capacitor has 

again discharged, and there is a current in the inductor in the opposite direction (Fig. 

42d). Still later, the capacitor charge returns to its original value (Fig. 42a), and the 

whole process repeats. If there are no energy losses, the charges on the capacitor 

continue to oscillate back and forth indefinitely. This process is called an electrical 

oscillation. 

From an energy standpoint the oscillations of an electrical circuit transfer 

energy from the capacitor’s electric field to the inductor’s magnetic field and back. 

The total energy associated with the circuit is constant. This is analogous to the 

transfer of energy in an oscillating mechanical system from potential energy to 

kinetic energy and back, with constant total energy. As we will see, this analogy goes 

much further. 

To study the flow of charge in detail, we proceed just as we did for the R-L 

circuit. Figure 43 shows our definitions of q and i. 
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Figure 43 - Applying Kirchhoff’s loop rule to the L-C circuit. The direction of travel 

around the loop in the loop equation is shown. Just after the circuit is completed and 

the capacitor first begins to discharge, as in Fig. 42a, the current is negative (opposite 

to the direction shown) 

 

We apply Kirchhoff’s loop rule to the circuit in Fig. 43. Starting at the lower-

right corner of the circuit and adding voltages as we go clockwise around the loop, 

we obtain 

 

  
  

  
 
 

 
   

(76) 

 

 

Since        , it follows that 
  

  
 

   

   
. We substitute this expression into the 

above equation and divide by    to obtain 

 

   

   
 
 

  
   

(77) 

 

Equation (52) has exactly the same form as the equation we derived for simple 

harmonic motion. That equation is  
   

   
   

 

 
  , or 

 

   

   
 
 

 
     

(78) 

 

In the L-C circuit the capacitor charge q plays the role of the displacement x, and the 

current         is analogous to the particle’s velocity         . The inductance 
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  is analogous to the mass m, and the reciprocal of the capacitance,    , is analogous 

to the force constant k. 

Pursuing this analogy, we recall that the angular frequency       of the 

harmonic oscillator is equal to      and the position is given as a function of time 

by 

 

             (79) 

 

where the amplitude   and the phase angle   depend on the initial conditions. In the 

analogous electrical situation the capacitor charge q is given by 

 

             (80) 
 

and the angular frequency   of oscillation is given by 

 

   
 

  
 

(81) 

 

You should verify that Eq. (80) satisfies the loop equation, Eq. (77), when   has the 

value given by Eq. (81). In doing this, you will find that the instantaneous current 

        is given by 

 

               (82) 
 

Thus the charge and current in an L-C circuit oscillate sinusoidally with time, with an 

angular frequency determined by the values of   and  . The ordinary frequency   the 

number of cycles per second, is equal to      as always. The constants   and   in 

Eqs. (63) and (82) are determined by the initial conditions. If at time     the left-

hand capacitor plate in Fig. 43 has its maximum charge   and the current i is zero, 

then    . If     at time    , then    
 

 
 rad. 

 

1.4.3 The L-R-C circuit 

 

In our discussion of the L-C circuit we assumed that there was no resistance in 

the circuit. This is an idealization, of course; every real inductor has resistance in its 

windings, and there may also be resistance in the connecting wires. Because of 

resistance, the electromagnetic energy in the circuit is dissipated and converted to 

other forms, such as internal energy of the circuit materials. Resistance in an electric 

circuit is analogous to friction in a mechanical system. 

Suppose an inductor with inductance and a resistor of resistance are connected 

in series across the terminals of a charged capacitor, forming an L-R-C series circuit. 

As before, the capacitor starts to discharge as soon as the circuit is completed. But 



68 
 

because of     losses in the resistor, the magnetic-field energy acquired by the 

inductor when the capacitor is completely discharged is less than the original electric-

field energy of the capacitor. In the same way, the energy of the capacitor when the 

magnetic field has decreased to zero is still smaller, and so on. 

 

 
Figure 44 - Graphs of capacitor charge as a function of time in an L-R-C series circuit 

with initial charge Q 

If the resistance is relatively small, the circuit still oscillates, but with damped 

harmonic motion (Fig. 44a), and we say that the circuit is underdamped. If we 

increase   the oscillations die out more rapidly. When   reaches a certain value, the 

circuit no longer oscillates; it is critically damped (Fig. 44b). For still larger values 

of   the circuit is overdamped (Fig. 44c), and the capacitor charge approaches zero 
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even more slowly. We used these same terms to describe the behavior of the 

analogous mechanical system, the damped harmonic oscillator. 

To analyze L-R-C series circuit behavior in detail, we consider the circuit 

shown in Fig. 45. It is like the L-C circuit of Fig. 43 except for the added resistor we 

also show the source that charges the capacitor initially. The labeling of the positive 

senses of q and i are the same as for the L-C circuit. 

 

 
Figure 45 – L-R-C series circuit 

 

First we close the switch in the upward position, connecting the capacitor to a 

source of emf   for a long enough time to ensure that the capacitor acquires its final 

charge      and any initial oscillations have died out. Then at time     we flip 

the switch to the downward position, removing the source from the circuit and 

placing the capacitor in series with the resistor and inductor. Note that the initial 

current is negative, opposite to the direction of i shown in Fig. 45. 

To find how q and i vary with time, we apply Kirchhoff’s loop rule. Starting at 

point a and going around the loop in the direction abcda, we obtain the equation 

 

     
  

  
 
 

 
   

(83) 
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Replacing i with       and rearranging, we get 

 

   

   
 
 

 

  

  
 
 

  
    

(84) 

 

Note that when     this reduces to Eq. (77) for an L-C circuit. 

There are general methods for obtaining solutions of Eq. (84). The form of the 

solution is different for the underdamped (small  ) and overdamped (large  ) cases. 

When    is less than 
  

 
, the solution has the form 

 

    
  

 
  
  
     

 

  
 
  

   
     

(85) 

 

where   and   are constants. We invite you to take the first and second derivatives of 

this function and show by direct substitution that it does satisfy Eq. (84). 

This solution corresponds to the underdamped behavior shown in Fig. 44a; the 

function represents a sinusoidal oscillation with an exponentially decaying amplitude. 

(Note that the exponential factor  
  

 

  
  

 is not the same as the factor  
  

 

 
  

). When 

    Eq. (85) reduces to Eq. (80) for the oscillations in an L-C circuit. If   is not 

zero, the angular frequency    of the oscillation is less than because of the term 

containing The angular frequency of the damped oscillations is given by 

 

    
 

  
 
  

   
 

(86) 

 

When    , this reduces to Eq. (81),    
 

  
. As   increases,    becomes smaller 

and smaller. When    
  

 
, the quantity under the radical becomes zero; the system 

no longer oscillates, and the case of critical damping (Fig. 44b) has been reached. For 

still larger values of   the system behaves as in Fig. 44c. In this case the circuit is 

overdamped, and q is given as a function of time by the sum of two decreasing 

exponential functions. 

In the underdamped case the phase constant   in the cosine function of Eq. 

(85) provides for the possibility of both an initial charge and an initial current at time 

    analogous to an underdamped harmonic oscillator given both an initial 

displacement and an initial velocity. 

We emphasize once more that the behavior of the L-R-C series circuit is 

completely analogous to that of the damped harmonic oscillator studied early. We 

invite you to verify, for example, that if you start with Eq.          
   

   
 and 
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substitute q for x, L for m, 1/C for k, and R for the damping constant b, the result is 

Eq. (84). Similarly, the cross-over point between underdamping and overdamping 

occurs at        for the mechanical system and at         for the electrical 

one. 

The practical applications of the L-R-C series circuit emerge when we include a 

sinusoidally varying source of emf in the circuit. This is analogous to the forced 

oscillation, and there are analogous resonance effects. Such a circuit is called an 

alternating-current (ac) circuit; the analysis of ac circuits is the principal topic of the 

next chapter. 

 

1.4.4 Maxwell’s equations and electromagnetic waves 

 

In the last several chapters we studied various aspects of electric and magnetic 

fields. We learned that when the fields don’t vary with time, such as an electric field 

produced by charges at rest or the magnetic field of a steady current, we can analyze 

the electric and magnetic fields independently without considering interactions 

between them. But when the fields vary with time, they are no longer independent. 

Faraday’s law tells us that a time-varying magnetic field acts as a source of electric 

field, as shown by induced emfs in inductors and transformers. Ampere’s law, 

including the displacement current discovered by Maxwell, shows that a time-varying 

electric field acts as a source of magnetic field. This mutual interaction between the 

two fields is summarized in Maxwell’s equations. 

Thus, when either an electric or a magnetic field is changing with time, a field 

of the other kind is induced in adjacent regions of space. We are led (as Maxwell 

was) to consider the possibility of an electromagnetic disturbance, consisting of time-

varying electric and magnetic fields, that can propagate through space from one 

region to another, even when there is no matter in the intervening region. Such a 

disturbance, if it exists, will have the properties of a wave, and an appropriate term is 

electromagnetic wave. 

Such waves do exist; radio and television transmission, light, x rays, and many 

other kinds of radiation are examples of electromagnetic waves. Our goal in this 

chapter is to see how such waves are explained by the principles of electromagnetism 

that we have studied thus far and to examine the properties of these waves. 

As often happens in the development of science, the theoretical understanding 

of electromagnetic waves evolved along a considerably more devious path than the 

one just outlined. In the early days of electromagnetic theory (the early 19th century), 

two different units of electric charge were used: one for electrostatics and the other 

for magnetic phenomena involving currents. In the system of units used at that time, 

these two units of charge had different physical dimensions. Their ratio had units of 

velocity, and measurements showed that the ratio had a numerical value that was 

precisely equal to the speed of light,          . At the time, physicists regarded 

this as an extraordinary coincidence and had no idea how to explain it. 

In searching to understand this result, Maxwell proved in 1865 that an 

electromagnetic disturbance should propagate in free space with a speed equal to that 
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of light and hence that light waves were likely to be electromagnetic in nature. At the 

same time, he discovered that the basic principles of electromagnetism can be 

expressed in terms of the four equations that we now call Maxwell’s equations. 

These four equations are (1) Gauss’s law for electric fields; (2) Gauss’s law for 

magnetic fields, showing the absence of magnetic monopoles; (3) Ampere’s law, 

including displacement current; and (4) Faraday’s law: 

 

         
     
  

 
(87) 

           
(88) 

                 
   

  
 
    

 
(89) 

          
   

  
 

(90) 

 

These equations apply to electric and magnetic fields in vacuum. If a material 

is present, the permittivity    and permeability    of free space are replaced by the 

permittivity and permeability of the material. If the values of and are different at 

different points in the regions of integration, then and have to be transferred to the 

left sides of Eqs. (87) and (89), respectively, and placed inside the integrals. The in 

Eq. (89) also has to be included in the integral that gives 
   

  
. 

According to Maxwell’s equations, a point charge at rest produces a static     

field but no     field; a point charge moving with a constant velocity produces both     

and     fields. Maxwell’s equations can also be used to show that in order for a point 

charge to produce electromagnetic waves, the charge must accelerate. In fact, it’s a 

general result of Maxwell’s equations that every accelerated charge radiates 

electromagnetic energy (Fig. 46). 

One way in which a point charge can be made to emit electromagnetic waves is 

by making it oscillate in simple harmonic motion, so that it has an acceleration at 

almost every instant (the exception is when the charge is passing through its 

equilibrium position). Figure 47 shows some of the electric field lines produced by 

such an oscillating point charge. Field lines are not material objects, but you may 

nonetheless find it helpful to think of them as behaving somewhat like strings that 

extend from the point charge off to infinity. Oscillating the charge up and down 

makes waves that propagate outward from the charge along these “strings.” Note that 

the charge does not emit waves equally in all directions; the waves are strongest at 

    to the axis of motion of the charge, while there are no waves along this axis. This 

is just what the “string” picture would lead you to conclude. There is also a magnetic 

disturbance that spreads outward from the charge; this is not shown in Fig. 47. 

Because the electric and magnetic disturbances spread or radiate away from the 

source, the name electromagnetic radiation is used interchangeably with the phrase 

“electromagnetic waves.” 
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Figure 46 - Power lines carry a strong alternating current, which means that a 

substantial amount of charge is accelerating back and forth and generating 

electromagnetic waves. These waves can produce a buzzing sound from your car 

radio when you drive near the lines 

 

 
Figure 47 - Electric field lines of a point charge oscillating in simple harmonic 

motion, seen at five instants during an oscillation period T. The charge’s trajectory is 

in the plane of the drawings. At     the point charge is at its maximum upward 

displacement. The arrow shows one “kink” in the lines of     as it propagates outward 

from the point charge. The magnetic field (not shown) comprises circles that lie in 

planes perpendicular to these figures and concentric with the axis of oscillation 

 

Electromagnetic waves with macroscopic wavelengths were first produced in 

the laboratory in 1887 by the German physicist Heinrich Hertz. As a source of waves, 

he used charges oscillating in L-C circuits; he detected the resulting electromagnetic 

waves with other circuits tuned to the same frequency. Hertz also produced 

electromagnetic standing waves and measured the distance between adjacent nodes 

(one half-wavelength) to determine the wavelength. Knowing the resonant frequency 

of his circuits, he then found the speed of the waves from the wavelength–frequency 

relationship     . He established that their speed was the same as that of light; this 
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verified Maxwell’s theoretical prediction directly. The SI unit of frequency is named 

in honor of Hertz: One hertz (1 Hz) equals one cycle per second. 

The modern value of the speed of light, which we denote by the symbol  , is 

             . (This value is the basis of our standard of length: One meter is 

defined to be the distance that light travels in             second.) For our 

purposes, is sufficiently accurate. The possible use of electromagnetic waves for 

long-distance communication does not seem to have occurred to Hertz. It was left to 

Marconi and others to make radio communication a familiar household experience. In 

a radio transmitter, electric charges are made to oscillate along the length of the 

conducting antenna, producing oscillating field disturbances like those shown in Fig. 

47. Since many charges oscillate together in the antenna, the disturbances are much 

stronger than those of a single oscillating charge and can be detected at a much 

greater distance. In a radio receiver the antenna is also a conductor; the fields of the 

wave emanating from a distant transmitter exert forces on free charges within the 

receiver antenna, producing an oscillating current that is detected and amplified by 

the receiver circuitry. 

For the remainder of this chapter our concern will be with electromagnetic 

waves themselves, not with the rather complex problem of how they are produced. 

The electromagnetic spectrum encompasses electromagnetic waves of all 

frequencies and wavelengths. Figure 48 shows approximate wavelength and 

frequency ranges for the most commonly encountered portion of the spectrum. 

Despite vast differences in their uses and means of production, these are all 

electromagnetic waves with the same propagation speed (in vacuum)   
             . Electromagnetic waves may differ in frequency   and wavelength 

 , but the relationship      in vacuum holds for each. 

 

 
Figure 48 - The electromagnetic spectrum. The frequencies and wavelengths found in 

nature extend over such a wide range that we have to use a logarithmic scale to show 

all important bands. The boundaries between bands are somewhat arbitrary 

 

We can detect only a very small segment of this spectrum directly through our 

sense of sight. We call this range visible light. Its wavelengths range from about 380 

to 750 nm                   , with corresponding frequencies from about 790 to 
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400 THz                   . Different parts of the visible spectrum evoke in 

humans the sensations of different colors. Table 2 gives the approximate wavelengths 

for colors in the visible spectrum. 

 

Table 2 – Wavelengths of visible light 

Wavelength, nm Colour 

380 - 450 Violet 

450 - 495 Blue 

495 - 570 Green 

570 - 590 Yellow 

590 - 620 Orange 

620 - 750 Red 

 

Ordinary white light includes all visible wavelengths. However, by using 

special sources or filters, we can select a narrow band of wavelengths within a range 

of a few nm. Such light is approximately monochromatic (single-color) light. 

Absolutely monochromatic light with only a single wavelength is an unattainable 

idealization. When we use the expression “monochromatic light with          ” 

with reference to a laboratory experiment, we really mean a small band of 

wavelengths around 550 nm. Light from a laser is much more nearly monochromatic 

than is light obtainable in any other way. 

Invisible forms of electromagnetic radiation are no less important than visible 

light. Our system of global communication, for example, depends on radio waves: 

AM radio uses waves with frequencies from            to           , while 

FM radio broadcasts are at frequencies from            to            . 

(Television broadcasts use frequencies that bracket the FM band.) Microwaves are 

also used for communication (for example, by cellular phones and wireless networks) 

and for weather radar (at frequencies near         ).Many cameras have a device 

that emits a beam of infrared radiation; by analyzing the properties of the infrared 

radiation reflected from the subject, the camera determines the distance to the subject 

and automatically adjusts the focus. X rays are able to penetrate through flesh, which 

makes them invaluable in dentistry and medicine. Gamma rays, the shortest-

wavelength type of electromagnetic radiation, are used in medicine to destroy cancer 

cells. 

 

1.4.5 Plane electromagnetic waves 
 

We are now ready to develop the basic ideas of electromagnetic waves and 

their relationship to the principles of electromagnetism. Our procedure will be to 

postulate a simple field configuration that has wavelike behavior. We’ll assume an 

electric field     that has only a and a magnetic field     with only a z-component, and 

we’ll assume that both fields move together in the +x-direction with a speed that is 

initially unknown. (As we go along, it will become clear why we choose     and     to 

be perpendicular to the direction of propagation as well as to each other.) Then we 
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will test whether these fields are physically possible by asking whether they are 

consistent with Maxwell’s equations, particularly Ampere’s law and Faraday’s law. 

We’ll find that the answer is yes, provided that   has a particular value. We’ll also 

show that the wave equation, which we encountered during our study of mechanical 

waves, can be derived from Maxwell’s equations. 

Using an xyz-coordinate system (Fig. 49), we imagine that all space is divided 

into two regions by a plane perpendicular to the x-axis (parallel to the yz-plane). At 

every point to the left of this plane there are a uniform electric field     in the +y-

direction and a uniform magnetic field     in the +z-direction as shown. Furthermore, 

we suppose that the boundary plane, which we call the wave front, moves to the right 

in the +x-direction with a constant speed   the value of which we’ll leave 

undetermined for now. Thus the     and     fields travel to the right into previously 

field-free regions with a definite speed. This is a rudimentary electromagnetic wave. 

A wave such as this, in which at any instant the fields are uniform over any plane 

perpendicular to the direction of propagation, is called a plane wave. In the case 

shown in Fig. 49, the fields are zero for planes to the right of the wave front and have 

the same values on all planes to the left of the wave front; later we will consider more 

complex plane waves. 

 

 
Figure 49 - An electromagnetic wave front. The plane representing the wave front 

moves to the right (in the positive x-direction) with speed c 

 

We won’t concern ourselves with the problem of actually producing such a 

field configuration. Instead, we simply ask whether it is consistent with the laws of 

electromagnetism - that is, with Maxwell’s equations. We’ll consider each of these 

four equations in turn. 
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Figure 50 - Gaussian surface for a transverse plane electromagnetic wave 

 

Let us first verify that our wave satisfies Maxwell’s first and second equations 

- that is, Gauss’s laws for electric and magnetic fields. To do this, we take as our 

Gaussian surface a rectangular box with sides parallel to the xy, xz, and yz coordinate 

planes (Fig. 50). The box encloses no electric charge. The total electric flux and 

magnetic flux through the box are both zero, even if part of the box is in the region 

where      . This would not be the case if     or     had an x-component, parallel 

to the direction of propagation; if the wave front were inside the box, there would be 

flux through the left-hand side of the box (at x=0) but not the right-hand side (at 

x>0). Thus to satisfy Maxwell’s first and second equations, the electric and magnetic 

fields must be perpendicular to the direction of propagation; that is, the wave must be 

transverse. 

The next of Maxwell’s equations to be considered is Faraday’s law: 

 

          
   

  
 

(91) 

 

To test whether our wave satisfies Faraday’s law, we apply this law to a rectangle 

efgh that is parallel to the xy-plane (Fig. 51a). As shown in Fig. 51b, a cross section in 

the xy-plane, this rectangle has height a and width   . At the time shown, the wave 

front has progressed partway through the rectangle, and     is zero along the side ef. In 

applying Faraday’s law we take the vector area     of rectangle efgh to be in the +z-

direction. With this choice the right-hand rule requires that we integrate         

counterclockwise around the rectangle. At every point on side ef,     is zero. At every 
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point on sides and he,     is either zero or perpendicular to    . Only side gh contributes 

to the integral. On this side,     and     are opposite, and we obtain 

 

             
(92) 

 

Hence, the left-hand side of Eq.   
 

    
 is nonzero. 

To satisfy Faraday’s law, Eq.   
 

    
, there must be a component of     in the 

z-component (perpendicular to    ) so that there can be a nonzero magnetic flux     

through the rectangle efgh and a nonzero derivative 
   

  
. Indeed, in our wave,     has 

only a z-component. We have assumed that this component is in the positive z-

direction. let’s see whether this assumption is consistent with Faraday’s law. During a 

time interval    the wave front moves a distance      to the right in Fig. 51b, 

sweeping out an area       of the rectangle efgh. During this interval the magnetic 

flux     through the rectangle efgh increases by             , so the rate of 

change of magnetic flux is 

 
   

  
     

(93) 

 

Now we substitute Eqs. (92) and (93) into Faraday’s law, Eq. (91); we get 

 

          
     (94) 

 

This shows that our wave is consistent with Faraday’s law only if the wave speed   

and the magnitudes of the perpendicular vectors     and     are related as in Eq. (94). 

Note that if we had assumed that     was in the negative z-direction, there would have 

been an additional minus sign in Eq. (94); since      and   are all positive 

magnitudes, no solution would then have been possible. Furthermore, any component 

of     in the y-direction (parallel to    ) would not contribute to the changing magnetic 

flux    through the rectangle efgh (which is parallel to the xy-plane) and so would 

not be part of the wave. 
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Figure 51 - (a) Applying Faraday’s law to a plane wave. (b) In a time dt, the magnetic 

flux through the rectangle in the xy-plane increases by an amount    . This increase 

equals the flux through the shaded rectangle with area ac dt; that is,           . 
Thus            

 

Finally, we carry out a similar calculation using Ampere’s law, the remaining 

member of Maxwell’s equations. There is no conduction current        so 

Ampere’s law is 

 

             
   

  
 

 

(95) 

 

To check whether our wave is consistent with Ampere’s law, we move our rectangle 

so that it lies in the xz-plane, as shown in Fig. 52, and we again look at the situation at 

a time when the wave front has traveled partway through the rectangle. We take the 

vector area     in the +y-direction, and so the right-hand rule requires that we 

integrate         counterclockwise around the rectangle. The     field is zero at every 

point along side ef, and at each point on sides fg and he it is either zero or 

perpendicular to    . Only side gh, where     and     are parallel, contributes to the 

integral, and we find 

 

            
(96) 

 

Hence, the left-hand side of Ampere’s law, Eq. (95), is nonzero; the right-hand side 

must be nonzero as well. Thus     must have a (perpendicular to    ) so that the electric 
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flux    through the rectangle and the time derivative        can be nonzero. We 

come to the same conclusion that we inferred from Faraday’s law: In an 

electromagnetic wave,     and    must be mutually perpendicular. 

 

 
Figure 52 - (a) Applying Ampere’s law to a plane wave. (Compare to Fig. 51a.) (b) In 

a time dt, the electric flux through the rectangle in the xz-plane increases by an 

amount     This increase equals the flux through the shaded rectangle with area ac 

dt; that is,           . Thus            
 

In a time interval    the electric flux    through the rectangle increases by 

            . Since we chose     to be in the +y-direction, this flux change is 

positive; the rate of change of electric field is 

 
   

  
     

(97) 

 

Substituting Eqs. (96) and (97) into Ampere’s law, Eq. (95), we find 

 

            
        (98) 

 

Thus our assumed wave obeys Ampere’s law only if      and   are related as in Eq. 

(98). 

Our electromagnetic wave must obey both Ampere’s law and Faraday’s law, so 

Eqs. (94) and (98) must both be satisfied. This can happen only if           or 
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(99) 

 

Inserting the numerical values of these quantities, we find 

 

  
 

                   
           

 

Our assumed wave is consistent with all of Maxwell’s equations, provided that the 

wave front moves with the speed given above, which you should recognize as the 

speed of light! Note that the exact value of is defined to be               the 

modern value of is defined to agree with this when used in Eq. (99). 

 

 

1.4.6 Sinusoidal electromagnetic waves 
 

Sinusoidal electromagnetic waves are directly analogous to sinusoidal 

transverse mechanical waves on a stretched string. In a sinusoidal electromagnetic 

wave,     and     at any point in space are sinusoidal functions of time, and at any 

instant of time the spatial variation of the fields is also sinusoidal. Some sinusoidal 

electromagnetic waves are plane waves; the property that at any instant the fields are 

uniform over any plane perpendicular to the direction of propagation. The entire 

pattern travels in the direction of propagation with speed  . The directions of     and     
are perpendicular to the direction of propagation (and to each other), so the wave is 

transverse. Electromagnetic waves produced by an oscillating point charge, shown in 

Fig. 47, are an example of sinusoidal waves that are not plane waves. But if we 

restrict our observations to a relatively small region of space at a sufficiently great 

distance from the source, even these waves are well approximated by plane waves 

(Fig. 53). In the same way, the curved surface of the (nearly) spherical earth appears 

flat to us because of our small size relative to the earth’s radius. In this section we’ll 

restrict our discussion to plane waves. 

The frequency ν, the wavelength λ, and the speed of propagation   of any 

periodic wave are related by the usual wavelength–frequency relationship     . If 
the frequency ν is 10

8
 Hz (100 MHz), typical of commercial FM radio broadcasts, the 

wavelength is 

 

  
         

      
     

 

Figure 48 shows the inverse proportionality between wavelength and frequency. 

Figure 54 shows a linearly polarized sinusoidal electromagnetic wave traveling in the 

+x-direction. The     and     vectors are shown for only a few points on the positive x-
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axis. Note that the electric and magnetic fields oscillate in phase:     is maximum 

where     is maximum and     is zero where     is zero. Note also that where     is in the 

+y-direction,     is in the +z-direction; where     is in the –y-direction,     is in the –z-

direction. At all points the vector product         is in the direction in which the wave 

is propagating (the +x-direction). 

 

 
Figure 53 - Waves passing through a small area at a sufficiently great distance from a 

source can be treated as plane waves 

 

We can describe electromagnetic waves by means of wave functions. One form 

of the wave function for a transverse wave traveling in the +x-direction along a 

stretched string is: 

 

                   (100) 

 

where        is the transverse displacement from its equilibrium position at time t of 

a point with coordinate x on the string. The quantity A is the maximum displacement, 

or amplitude, of the wave;   is its angular frequency, equal to    times the 

frequency ν; and   is the wave number, equal to     , where λ is the wavelength. 
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Let         and         represent the instantaneous values of the y-component 

of     and the z-component of    , respectively, in Fig. 54, and let      and      

represent the maximum values, or amplitudes, of these fields. The wave functions for 

the wave are then 

 

                                              (101) 

 

We can also write the wave functions in vector form: 

 

                            

                           

(102) 

 

The sine curves in Fig. 54 represent instantaneous values of the electric and 

magnetic fields as functions of x at time     - that is,            and           . 
As time goes by, the wave travels to the right with speed  . Equations (101) and 

(102) show that at any point the sinusoidal oscillations of and are in phase. From Eq. 

(94) the amplitudes must be related by 

 

           (103) 
 

These amplitude and phase relationships are also required for        and       , 
which came from Faraday’s law and Ampere’s law, respectively.  

Figure 54 shows the electric and magnetic fields of a wave traveling in the 

negative x-direction. At points where     is in the positive y-direction,     is in the 

negative z-direction; where     is in the negative y-direction,     is in the positive z-

direction. The wave functions for this wave are 

 

                                               (104) 

 

As with the wave traveling in the +x-direction, at any point the sinusoidal oscillations 

of the     and     fields are in phase, and the vector product         points in the 

direction of propagation. 
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Figure 54 - Representation of one wavelength of a linearly polarized sinusoidal plane 

electromagnetic wave traveling in the negative x-direction at    . The fields are 

shown only for points along the x-axis 

 

The sinusoidal waves shown in Fig. 54 is both linearly polarized in the y-

direction; the     field is always parallel to the y-axis.  

 

1.4.7 Energy in electromagnetic waves 
 

It is a familiar fact that energy is associated with electromagnetic waves; think 

of the energy in the sun’s radiation. Microwave ovens, radio transmitters, and lasers 

for eye surgery all make use of the energy that these waves carry. To understand how 

to utilize this energy, it’s helpful to derive detailed relationships for the energy in an 

electromagnetic wave. 

We begin with the expressions derived early for the energy densities in 

electric and magnetic fields; we suggest you review those derivations now. Equations 

  
 

 
   

  and   
 

   
   show that in a region of empty space where     and     

fields are present, the total energy density is given by 

 

  
 

 
   

  
 

   
   

(105) 

 

where    and    are, respectively, the permittivity and permeability of free space. For 

electromagnetic waves in vacuum, the magnitudes E and B are related by 

 

  
 

 
        

(106) 

 

Combining Eqs. (105) and (106), we can also express the energy density   in a 

simple electromagnetic wave in vacuum as 
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(107) 

 

This shows that in vacuum, the energy density associated with the field     in our 

simple wave is equal to the energy density of the     field. In general, the electric field 

magnitude E is a function of position and time, as for the sinusoidal wave described 

by Eqs. (101); thus the energy density of an electromagnetic wave, given by Eq. 

(107), also depends in general on position and time. 

Electromagnetic waves such as those we have described are travelling waves 

that transport energy from one region to another. We can describe this energy transfer 

in terms of energy transferred per unit time per unit cross-sectional area, or power 

per unit area, for an area perpendicular to the direction of wave travel. 

 

 
Figure 55 - A wave front at a time dt after it passes through the stationary plane with 

area S 

 

To see how the energy flow is related to the fields, consider a stationary plane, 

perpendicular to the that coincides with the wave front at a certain time. In a time 

after this, the wave front moves a distance         to the right of the plane. 

Considering an area A on this stationary plane (Fig. 55), we note that the energy in 

the space to the right of this area must have passed through the area to reach the new 

location. The volume    of the relevant region is the base area S times the length 

    , and the energy    in this region is the energy density   times this volume: 

 

           
          (108) 

 



86 
 

This energy passes through the area S in time   . The energy flow per unit time per 

unit area, which we will call S is 

 

  
 

 

  

  
    

  
(109) 

 

 

Using Eqs. (94) and (99), we can derive the alternative forms 

 

  
  

     
    

  
  
   

  

  
 

(110) 

 

We leave the derivation of Eq. (110) from Eq. (109) as an exercise for you. The units 

of S are energy per unit time per unit area, or power per unit area. The SI unit of S is 

         or       . 

We can define a vector quantity that describes both the magnitude and 

direction of the energy flow rate: 

 

   
 

  
        

(111) 

 

The vector    is called the Poynting vector; it was introduced by the British physicist 

John Poynting (1852–1914). Its direction is in the direction of propagation of the 

wave. Since     and     are perpendicular, the magnitude of    is   
  

  
 from Eqs. (109) 

and (116) this is the energy flow per unit area and per unit time through a cross-

sectional area perpendicular to the propagation direction. The total energy flow per 

unit time (power, P) out of any closed surface is the integral of    over the surface: 

 

          
(112) 

 

For the sinusoidal waves studied early, as well as for other more complex 

waves, the electric and magnetic fields at any point vary with time, so the Poynting 

vector at any point is also a function of time. Because the frequencies of typical 

electromagnetic waves are very high, the time variation of the Poynting vector is so 

rapid that it’s most appropriate to look at its average value. The magnitude of the 

average value of    at a point is called the intensity of the radiation at that point. The 

SI unit of intensity is the same as for S,        (watt per square meter). 

Let’s work out the intensity of the sinusoidal wave described by Eqs. (102). 

We first substitute     and     into Eq. (111): 
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(113) 

 

The vector product of the unit vectors is           and             is never 

negative, so         always points in the positive x-direction (the direction of wave 

propagation). The x-component of the Poynting vector is 

 

        
        

  
             

        
   

                (114) 

 

The time average value of             is zero because at any point, it is positive 

during one half-cycle and negative during the other half. So the average value of the 

Poynting vector over a full cycle is            where 

 

    
        

   
 

(115) 

 

That is, the magnitude of the average value of    for a sinusoidal wave (the intensity I 

of the wave) is     the maximum value. By using the relationships            

and           we can express the intensity in several equivalent 

forms: 

 

      
        

   
 
    
 

    
  

 
 

 
 
  
  
    
  

 

 
       

  

 

(116) 

 

We invite you to verify that these expressions are all equivalent. 

For a wave traveling in the –x-direction, represented by Eqs. (104), the 

Poynting vector is in the –x-direction at every point, but its magnitude is the same as 

for a wave traveling in the +x-direction. Verifying these statements is left to you. 

 
Discussion questions 

1. By measuring the electric and magnetic fields at a point in space where there is 

an electromagnetic wave, can you determine the direction from which the wave 

came? Explain. 

2. According to Ampere’s law, is it possible to have both a conduction current 

and a displacement current at the same time? Is it possible for the effects of the 

two kinds of current to cancel each other exactly so that no magnetic field is 

produced? Explain. 
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3. Give several examples of electromagnetic waves that are encountered in 

everyday life. How are they all alike? How do they differ? 

4. Sometimes neon signs located near a powerful radio station are seen to glow 

faintly at night, even though they are not turned on. What is happening? 

5. Is polarization a property of all electromagnetic waves, or is it unique to visible 

light? Can sound waves be polarized? What fundamental distinction in wave 

properties is involved? Explain. 

6. The light beam from a searchlight may have an electricfield magnitude of 

1000V/m corresponding to a potential difference of 1500 V between the head 

and feet of a 1.5-m-tall person on whom the light shines. Does this cause the 

person to feel a strong electric shock? Why or why not? 

7. For a certain sinusoidal wave of intensity I, the amplitude of the magnetic field 

is B. What would be the amplitude (in terms of B) in a similar wave of twice 

the intensity? 

8. Most automobiles have vertical antennas for receiving radio broadcasts. 

Explain what this tells you about the direction of polarization of in the radio 

waves used in broadcasting. 

9. If a light beam carries momentum, should a person holding a flashlight feel a 

recoil analogous to the recoil of a rifle when it is fired? Why is this recoil not 

actually observed? 

10. A light source radiates a sinusoidal electromagnetic wave uniformly in all 

directions. This wave exerts an average pressure p on a perfectly reflecting 

surface a distance R away from it. What average pressure (in terms of p) would 

this wave exert on a perfectly absorbing surface that was twice as far from the 

source? 

11. Does an electromagnetic standing wave have energy? Does it have 

momentum? Are your answers to these questions the same as for a traveling 

wave? Why or why not? 

12. When driving on the upper level of the Bay Bridge, westbound from Oakland 

to San Francisco, you can easily pick up a number of radio stations on your car 

radio. But when driving eastbound on the lower level of the bridge, which has 

steel girders on either side to support the upper level, the radio reception is 

much worse. Why is there a difference? 

 
1.5 Alternating current 

 

1.5.1 Phasors and alternating currents 

 

During the 1880s in the United States there was a heated and acrimonious 

debate between two inventors over the best method of electric-power distribution. 

Thomas Edison favored direct current (dc)—that is, steady current that does not vary 

with time. George Westinghouse favored alternating current (ac), with sinusoidally 

varying voltages and currents. He argued that transformers (which we will study in 

this chapter) can be used to step the voltage up and down with ac but not with dc; low 
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voltages are safer for consumer use, but high voltages and correspondingly low 

currents are best for long-distance power transmission to minimize     losses in the 

cables. 

Eventually, Westinghouse prevailed, and most present-day household and 

industrial power-distribution systems operate with alternating current. Any appliance 

that you plug into a wall outlet uses ac, and many battery-powered devices such as 

radios and cordless telephones make use of the dc supplied by the battery to create or 

amplify alternating currents. Circuits in modern communication equipment, including 

pagers and television, also make extensive use of ac. 

To supply an alternating current to a circuit, a source of alternating emf or 

voltage is required. An example of such a source is a coil of wire rotating with 

constant angular velocity in a magnetic field. This develops a sinusoidal alternating 

emf and is the prototype of the commercial alternating-current generator or 

alternator. 

We use the term ac source for any device that supplies a sinusoidally varying 

voltage (potential difference)   or   current The usual circuit-diagram symbol for an 

ac source is . 

A sinusoidal voltage might be described by a function such as 

 

         (31.1 17) 
 

In this expression,   (lowercase) is the instantaneous potential difference;   

(uppercase) is the maximum potential difference, which we call the voltage 

amplitude; and is the angular frequency, equal to    times the frequency ν (Fig. 56). 

In the United States and Canada, commercial electric-power distribution 

systems always use a frequency of        , corresponding ; in much of the rest of 

the world,         is used. Similarly, a sinusoidal current might be described as 

 

         (31.2 118) 
 

where   (lowercase) is the instantaneous current and   (uppercase) is the maximum 

current or current amplitude. 
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Figure 56 – The voltage across a sinusoidal ac source 

 

To represent sinusoidally varying voltages and currents, we will use rotating 

vector diagrams similar to those we used in the study of simple harmonic motion. In 

these diagrams the instantaneous value of a quantity that varies sinusoidally with time 

is represented by the projection onto a horizontal axis of a vector with a length equal 

to the amplitude of the quantity. The vector rotates counterclockwise with constant 

angular speed  . These rotating vectors are called phasors, and diagrams containing 

them are called phasor diagrams. Figure 57 shows a phasor diagram for the 

sinusoidal current described by Eq. (118). The projection of the phasor onto the 

horizontal axis at time   is       ; this is why we chose to use the cosine function 

rather than the sine in Eq. (118). 

 

 
Figure 57 – A phasor diagram 

 

How do we measure a sinusoidally varying current? We used a d’Arsonval 

galvanometer to measure steady currents. But if we pass a sinusoidal current through 
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a d’Arsonval meter, the torque on the moving coil varies sinusoidally, with one 

direction half the time and the opposite direction the other half. The needle may 

wiggle a little if the frequency is low enough, but its average deflection is zero. 

Hence a d’Arsonval meter by itself isn’t very useful for measuring alternating 

currents. 

To get a measurable one-way current through the meter, we can use diodes. A 

diode is a device that conducts better in one direction than in the other; an ideal diode 

has zero resistance for one direction of current and infinite resistance for the other. 

Figure 58a shows one possible arrangement, called a full-wave rectifier circuit. The 

current through the galvanometer G is always upward, regardless of the direction of 

the current from the ac source (i.e., which part of the cycle the source is in). The 

graph in Fig. 58b shows the current through G: It pulsates but always has the same 

direction, and the average meter deflection is not zero. 

 

 
Figure 58 - (a) A full-wave rectifier circuit. (b) Graph of the resulting current through 

the galvanometer G. 

 

The rectified average current      is defined so that during any whole number 

of cycles, the total charge that flows is the same as though the current were constant 

with a value equal to     . The notation      and the name rectified average current 

emphasize that this is not the average of the original sinusoidal current. In Fig. 58b 

the total charge that flows in time t corresponds to the area under the curve of i versus 

t; this area must equal the rectangular area with height     . We see that      is less 

than the maximum current I; the two are related by  

 

     
 

 
          

(119) 

 

The galvanometer deflection is proportional to     . The galvanometer scale can be 

calibrated to read I ,      or, most commonly,     . 
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A more useful way to describe a quantity that can be either positive or negative 

is the root-mean-square (rms) value.We used rms values early in connection with the 

speeds of molecules in a gas. We square the instantaneous current  , take the average 

(mean) value of   , and finally take the square root of that average. This procedure 

defines the root-mean-square current, denoted as      (Fig. 59). Even when   is 

negative,    is always positive, so      is never zero (unless   is zero at every instant). 

 

 
Figure 59 - Calculating the root-mean-square (rms) value of an alternating current 

 

Here’s how we obtain      for a sinusoidal current, like that shown in Fig. 59. 

If the instantaneous current is given by         , then 

 

            (120) 

 

Using a double-angle formula from trigonometry, 

 

       
 

 
           

(121) 

 

we find 

 

     
 

 
             

 

 
   

 

 
       

(122) 

 

The average of        is zero because it is positive half the time and negative half 

the time. Thus the average of    is simply     .The square root of this is     : 
 

     
 

  
 

(123) 

 



93 
 

In the same way, the root-mean-square value of a sinusoidal voltage with amplitude 

  is 

 

     
 

  
 

(124) 

 

We can convert a rectifying ammeter into a voltmeter by adding a series 

resistor, just as for the dc case discussed early. Meters used for ac voltage and current 

measurements are nearly always calibrated to read rms values, not maximum or 

rectified average. Voltages and currents in power distribution systems are always 

described in terms of their rms values. The usual household power supply, “120-volt 

ac,” has an rms voltage of 120 V (Fig. 60). The voltage amplitude is 

 

                         (125) 

 

 
Figure 60 - This wall socket delivers a root-mean- square voltage of 120 V. Sixty 

times per second, the instantaneous voltage across its terminals varies from 

                to        and back again 

 
1.5.2 Resistance and reactance 

 

In this section we will derive voltage–current relationships for individual 

circuit elements carrying a sinusoidal current. We’ll consider resistors, inductors, and 

capacitors. 

Resistor in an ac Circuit. First let’s consider a resistor with resistance through 

which there is a sinusoidal current given by:         . The positive direction of 

current is counterclockwise around the circuit, as in Fig. 61a. The current amplitude 

(maximum current) is I. From Ohm’s law the instantaneous potential    of point a 

with respect to point b (that is, the instantaneous voltage across the resistor) is 

 

        (126) 
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The maximum voltage    the voltage amplitude, is the coefficient of the 

cosine function: 

 

      (127) 
 

Hence we can also write 

 

           (128) 
 

The current and voltage are both proportional to so the current is in phase with 

the voltage. Equation (127) shows that the current and voltage amplitudes are related 

in the same way as in a dc circuit. 

 

 
Figure 61 – Resistance connected across an ac source 

 

Figure 61b shows graphs of and as functions of time. The vertical scales for 

current and voltage are different, so the relative heights of the two curves are not 

significant. The corresponding phasor diagram is given in Fig. 61c. Because and are 

in phase and have the same frequency, the current and voltage phasors rotate 

together; they are parallel at each instant. Their projections on the horizontal axis 

represent the instantaneous current and voltage, respectively. 

Inductor in an ac Circuit. Next, we replace the resistor in Fig. 61 with a pure 

inductor with self-inductance   and zero resistance (Fig. 62a). Again we assume that 

the current is          with the positive direction of current taken as 

counterclockwise around the circuit. 
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Figure 62– Inductance connected across an ac source 

 

 

Although there is no resistance, there is a potential difference    between the 

inductor terminals a and b because the current varies with time, giving rise to a self-

induced emf. The induced emf in the direction of is given by:           ; 
however, the voltage is    not simply equal to  . To see why, notice that if the 

current in the inductor is in the positive (counterclockwise) direction from a to b and 

is increasing, then       is positive and the induced emf is directed to the left to 

oppose the increase in current; hence point a is at higher potential than is point b. 

Thus the potential of point a with respect to point b is positive and is given by 

     
  

  
, the negative of the induced emf. (You should convince yourself that this 

expression gives the correct sign of    in all cases, including   counterclockwise and 

decreasing,   clockwise and increasing, and   clockwise and decreasing). So we have 

 

    
  

  
  

 

  
                   

(129) 

 

The voltage    across the inductor at any instant is proportional to the rate of 

change of the current. The points of maximum voltage on the graph correspond to 

maximum steepness of the current curve, and the points of zero voltage are the points 

where the current curve instantaneously levels off at its maximum and minimum 

values (Fig. 62b). The voltage and current are “out of step” or out of phase by a 

quarter-cycle. Since the voltage peaks occur a quarter-cycle earlier than the current 

peaks, we say that the voltage leads the current by The phasor diagram in Fig. 62c 

also shows this relationship; the voltage phasor is ahead of the current phasor by 90 . 
We can also obtain this phase relationship by rewriting Eq. (129) using the 

identity                : 

 

                 (130) 
 

This result shows that the voltage can be viewed as a cosine function with a 

“head start” of 90  relative to the current. 



96 
 

As we have done in Eq. (130), we will usually describe the phase of the voltage 

relative to the current, not the reverse. Thus if the current   in a circuit is  

 

         (131) 

 

and the voltage of one point with respect to another is 

 

             (132) 

 

we call   the phase angle; it gives the phase of the voltage relative to the current. 

For a pure resistor,    , and for a pure inductor,      . 
From Eq. (129) or (130) the amplitude of the inductor voltage is 

 

       (133) 
 

We define the inductive reactance    of an inductor as 

 

      (134) 
 

Using   , we can write Eq. (31.11) in a form similar to Eq. (127) for a resistor 

        : 
 

       (135) 
 

Because    is the ratio of a voltage and a current, its SI unit is the ohm, the 

same as for resistance. 

The inductive reactance    is really a description of the self-induced emf that 

opposes any change in the current through the inductor. From Eq. (135), for a given 

current amplitude   the voltage             across the inductor and the self-

induced emf            both have an amplitude    that is directly proportional to 

  . According to Eq. (134), the inductive reactance and self-induced emf increase 

with more rapid variation in current (that is, increasing angular frequency  ) and 

increasing inductance L. 

If an oscillating voltage of a given amplitude    is applied across the inductor 

terminals, the resulting current will have a smaller amplitude   for larger values of 

  . Since    is proportional to frequency, a high-frequency voltage applied to the 

inductor gives only a small current, while a lower-frequency voltage of the same 

amplitude gives rise to a larger current. Inductors are used in some circuit 

applications, such as power supplies and radio-interference filters, to block high 

frequencies while permitting lower frequencies or dc to pass through. A circuit device 

that uses an inductor for this purpose is called a low-pass filter. 
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1.5.3 The L-R-C series circuit 

 

Many ac circuits used in practical electronic systems involve resistance, 

inductive reactance, and capacitive reactance. Figure 62a shows a simple example: A 

series circuit containing a resistor, an inductor, a capacitor, and an ac source. 

To analyze this and similar circuits, we will use a phasor diagram that includes 

the voltage and current phasors for each of the components. In this circuit, because of 

Kirchhoff’s loop rule, the instantaneous total voltage     across all three components 

is equal to the source voltage at that instant. We will show that the phasor 

representing this total voltage is the vector sum of the phasors for the individual 

voltages. 

Figures 62b and 62c show complete phasor diagrams for the circuit of Fig. 62a. 

We assume that the source supplies a current   given by         . Because the 

circuit elements are connected in series, the current at any instant is the same at every 

point in the circuit. Thus a single phasor I, with length proportional to the current 

amplitude, represents the current in all circuit elements. 

We use the symbols        and    for the instantaneous voltages across      
and  , and the symbols        and    for the maximum voltages. We denote the 

instantaneous and maximum source voltages by   and  . Then, in Fig. 62a,   
                   and       . 

We have shown that the potential difference between the terminals of a resistor 

is in phase with the current in the resistor and that its maximum value    is given by 

Eq. (127): 

 

      (136) 

 

The phasor    in Fig. 62b, in phase with the current phasor   represents the voltage 

across the resistor. Its projection onto the horizontal axis at any instant gives the 

instantaneous potential difference   . 

The voltage across an inductor leads the current by Its voltage amplitude is 

given by Eq. (135): 

 

       (137) 

 

The phasor    in Fig. 61b represents the voltage across the inductor, and its 

projection onto the horizontal axis at any instant equals   . 

The voltage across a capacitor lags the current by 90. Its voltage amplitude is 

given by Eq.: 

 

       (138) 
 

The phasor    in Fig. 61b represents the voltage across the capacitor, and its 

projection onto the horizontal axis at any instant equals   . 
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The instantaneous potential difference between terminals a and d is equal at 

every instant to the (algebraic) sum of the potential differences       and   . That is, 

it equals the sum of the projections of the phasors       and   . But the sum of the 

projections of these phasors is equal to the projection of their vector sum. So the 

vector sum must be the phasor that represents the source voltage   and the 

instantaneous total voltage     across the series of elements. 

To form this vector sum, we first subtract the phasor    from the phasor   . 

(These two phasors always lie along the same line, with opposite directions.) This 

gives the phasor      . This is always at right angles to the phasor    so from the 

Pythagorean theorem the magnitude of the phasor   is 

 

     
         

                  
  

or 

              
  

 

(139) 

 

We define the impedance   of an ac circuit as the ratio of the voltage 

amplitude across the circuit to the current amplitude in the circuit. From Eq. (139) the 

impedance of the L-R-C series circuit is 

 

             
  (140) 

 

so we can rewrite Eq. (139) as 

 

     (141) 
 

While Eq. (140) is valid only for an L-R-C series circuit, we can use Eq. (141) to 

define the impedance of any network of resistors, inductors, and capacitors as the 

ratio of the amplitude of the voltage across the network to the current amplitude. The 

SI unit of impedance is the ohm. 

Equation (141) has a form similar to      with impedance   in an ac circuit 

playing the role of resistance   in a dc circuit. Just as direct current tends to follow 

the path of least resistance, so alternating current tends to follow the path of lowest 

impedance. Note, however, that impedance is actually a function of      and   as 

well as of the angular frequency We can see this by substituting Eq. (134) for    and 

for    into Eq. (140), giving the following complete expression for   for a series 

circuit: 

 

             
                 (142) 

 

Hence for a given amplitude   of the source voltage applied to the circuit, the 

amplitude       of the resulting current will be different at different frequencies. 
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We’ll explore this frequency dependence early. In the phasor diagram shown in 

Fig. 62b, the angle   between the voltage and current phasors is the phase angle of 

the source voltage with respect to the current  ; that is, it is the angle by which the 

source voltage leads the current. 

From the diagram, 

 

     
       

 
 

(143) 

 

If the current is          then the source voltage   is 

 

             (144) 
 

Figure 62b shows the behavior of a circuit in which      . Figure 62c shows the 

behavior when      ; the voltage phasor lies on the opposite side of the current 

phasor   and the voltage lags the current. In this case,       is negative,      is 

negative, and   is a negative angle between 0 and 90. Since    and    depend on 

frequency, the phase angle depends on frequency as well. 

All of the expressions that we’ve developed for an L-R-C series circuit are still 

valid if one of the circuit elements is missing. If the resistor is missing, we set    ; 

if the inductor is missing, we set    . But if the capacitor is missing, we set    , 

corresponding to the absence of any potential difference            or any 

capacitive reactance            . 
In this entire discussion we have described magnitudes of voltages and currents 

in terms of their maximum values, the voltage and current amplitudes. But we 

remarked that these quantities are usually described in terms of rms values, not 

amplitudes. For any sinusoidally varying quantity, the rms value is always      

times the amplitude. All the relationships between voltage and current that we have 

derived in this and the preceding sections are still valid if we use rms quantities 

throughout instead of amplitudes. For example, if we divide Eq. (141) by    we get 

 
 

  
 

 

  
  

(145) 

 

which we can rewrite as 

 

           (146) 
 

We can translate Eqs. (127), (135), and (138) in exactly the same way. 

We have considered only ac circuits in which an inductor, a resistor, and a 

capacitor are in series. You can do a similar analysis for an L-R-C parallel circuit; 

see. 

Finally, we remark that in this section we have been describing the steadystate 

condition of a circuit, the state that exists after the circuit has been connected to the 
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source for a long time. When the source is first connected, there may be additional 

voltages and currents, called transients, whose nature depends on the time in the 

cycle when the circuit is initially completed. A detailed analysis of transients is 

beyond our scope. They always die out after a sufficiently long time, and they do not 

affect the steady-state behavior of the circuit. But they can cause dangerous and 

damaging surges in power lines, which is why delicate electronic systems such as 

computers are often provided with power-line surge protectors. 

 
1.5.4 Power in alternating current 

 

Alternating currents play a central role in systems for distributing, converting, 

and using electrical energy, so it’s important to look at power relationships in ac 

circuits. For an ac circuit with instantaneous current and current   amplitude  , we’ll 

consider an element of that circuit across which the instantaneous potential difference 

is with voltage amplitude  . The instantaneous power   delivered to this circuit 

element is 

 

     (147) 
 

Let’s first see what this means for individual circuit elements. We’ll assume in 

each case that         . 
Power in a Resistor. Suppose first that the circuit element is a pure resistor   

as in Fig. 61a; then      and   are in phase.We obtain the graph representing   by 

multiplying the heights of the graphs of   and   in Fig. 61b at each instant. This graph 

is shown by the black curve in Fig. 63a. The product    is always positive because   

and   are always either both positive or both negative. Hence energy is supplied to the 

resistor at every instant for both directions of  , although the power is not constant. 

The power curve for a pure resistor is symmetrical about a value equal to one-

half its maximum value   , so the average power     is 

 

    
 

 
   

(148) 

 

An equivalent expression is 

 

    
 

  

 

  
          

(149) 

 

Also,           , so we can express by any of the equivalent forms 

 

        
   

    
 

 
          

(150) 
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Note that the expressions in Eq. (150) have the same form as the corresponding 

relationships for a dc circuit. Also note that they are valid only for pure resistors, not 

for more complicated combinations of circuit elements. 

Power in an Inductor. Next we connect the source to a pure inductor  , as in 

Fig. 61a. The voltage      leads the current   by 90. When we multiply the curves 

of   and   the product    is negative during the half of the cycle when   and   have 

opposite signs. The power curve, shown in Fig. 63b, is symmetrical about the 

horizontal axis; it is positive half the time and negative the other half, and the average 

power is zero. When   is positive, energy is being supplied to set up the magnetic 

field in the inductor; when is negative, the field is collapsing and the inductor is 

returning energy to the source. The net energy transfer over one cycle is zero. 

 

 
Figure 63 - Graphs of current, voltage, and power as function for (a) a pure resistor, 

(b) a pure inductor, (c) a pure capacitor, and (d) an arbitrary ac circuit that can have 

resistance, inductance, and capacitor 

 

Power in a Capacitor. Finally, we connect the source to a pure capacitor as in 

Fig. 62a. The voltage      lags the current by Figure 63c shows the power curve; 

the average power is again zero. Energy is supplied to charge the capacitor and is 

returned to the source when the capacitor discharges. The net energy transfer over 

one cycle is again zero. 

Power in a General ac Circuit. In any ac circuit, with any combination of 

resistors, capacitors, and inductors, the voltage   across the entire circuit has some 

phase angle   with respect to the current  . Then the instantaneous power is given by 

 

                          (151) 
 

The instantaneous power curve has the form shown in Fig. 63d. The area between the 

positive loops and the horizontal axis is greater than the area between the negative 

loops and the horizontal axis, and the average power is positive. 

We can derive from Eq. (147) an expression for the average power     by 

using the identity for the cosine of the sum of two angles: 
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(152) 

 

From the discussion that led to Eq. (123), we see that the average value of        

(over one cycle) is 
 

 
. The average value of            is zero because this product 

is equal to 
 

 
      , whose average over a cycle is zero. So the average power     is 

 

    
 

 
                    

(153) 

 

When   and   are in phase, so    , the average power equals 
 

 
           ; 

when   and   are     out of phase, the average power is zero. In the general case, 

when   has a phase angle   with respect to  , the average power equals 
 

 
  multiplied 

by      , the component of the voltage phasor that is in phase with the current 

phasor. Figure 64 shows the general relationship of the current and voltage phasors. 

For the L-R-C series circuit, Figs. 62b and 62c show that       equals the voltage 

amplitude    for the resistor; hence Eq. (153) is the average power dissipated in the 

resistor. On average there is no energy flow into or out of the inductor or capacitor, 

so none of     goes into either of these circuit elements. 

 

 
Figure 64 – Using phasors to calculate average power for an arbitary ac circuit 

 

The factor      is called the power factor of the circuit. For a pure resistance, 

            and             . For a pure inductor or capacitor,   
             and      . For an L-R-C series circuit the power factor is equal to 

    we leave the proof of this statement to you. 

Alow power factor (large angle   of lag or lead) is usually undesirable in 

power circuits. The reason is that for a given potential difference, a large current is 

needed to supply a given amount of power. This results in large     losses in the 

transmission lines. Your electric power company may charge a higher rate to a client 

with a low power factor. Many types of ac machinery draw a lagging current; that is, 

the current drawn by the machinery lags the applied voltage. Hence the voltage leads 
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the current, so     and       . The power factor can be corrected toward the 

ideal value of 1 by connecting a capacitor in parallel with the load. The current drawn 

by the capacitor leads the voltage (that is, the voltage across the capacitor lags the 

current), which compensates for the lagging current in the other branch of the circuit. 

The capacitor itself absorbs no net power from the line. 

 
1.5.5 Transformers 

 

One of the great advantages of ac over dc for electric-power distribution is that 

it is much easier to step voltage levels up and down with ac than with dc. For 

longdistance power transmission it is desirable to use as high a voltage and as small a 

current as possible; this reduces     losses in the transmission lines, and smaller 

wires can be used, saving on material costs. Present-day transmission lines routinely 

operate at rms voltages of the order of 500 kV. On the other hand, safety 

considerations and insulation requirements dictate relatively low voltages in 

generating equipment and in household and industrial power distribution. The 

standard voltage for household wiring is 120 V in the United States and Canada and 

240 V in many other countries. The necessary voltage conversion is accomplished by 

the use of transformers. 

How Transformers Work. Figure 65 shows an idealized transformer. The key 

components of the transformer are two coils or windings, electrically insulated from 

each other but wound on the same core. The core is typically made of a material, such 

as iron, with a very large relative permeability   . This keeps the magnetic field 

lines due to a current in one winding almost completely within the core. Hence 

almost all of these field lines pass through the other winding, maximizing the mutual 

inductance of the two windings. The winding to which power is supplied is called the 

primary; the winding from which power is delivered is called the secondary. The 

circuit symbol for a transformer with an iron core, such as those used in power 

distribution systems, is  

Here’s how a transformer works. The ac source causes an alternating current in 

the primary, which sets up an alternating flux in the core; this induces an emf in each 

winding, in accordance with Faraday’s law. The induced emf in the secondary gives 

rise to an alternating current in the secondary, and this delivers energy to the device 

to which the secondary is connected. All currents and emfs have the same frequency 

as the ac source. 
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Figure 65 – Schematic diagram of an idealized step-up transformer. The primary is 

connected to an ac source; the secondary is connected to a device with resistance   

 

Let’s see how the voltage across the secondary can be made larger or smaller in 

amplitude than the voltage across the primary. We neglect the resistance of the 

windings and assume that all the magnetic field lines are confined to the iron core, so 

at any instant the magnetic flux    is the same in each turn of the primary and 

secondary windings. The primary winding has turns and the secondary winding has 

turns. When the magnetic flux changes because of changing currents in the two coils, 

the resulting induced emfs are 

 

      
   

  
 

and 

      
   

  
 

 

(154) 

 

The flux per turn    is the same in both the primary and the secondary, so 

Eqs. (154) show that the induced emf per turn is the same in each. The ratio of the 

secondary emf    to the primary emf is    therefore equal at any instant to the ratio 

of secondary to primary turns: 

 
  
  
 
  
  

 
(155) 
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Since    and    both oscillate with the same frequency as the ac source, Eq. (155) 

also gives the ratio of the amplitudes or of the rms values of the induced emfs. If the 

windings have zero resistance, the induced emfs    and    are equal to the terminal 

voltages across the primary and the secondary, respectively; hence 

 
  
  
 
  
  

 
(156) 

 

where    and    are either the amplitudes or the rms values of the terminal voltages. 

By choosing the appropriate turns ratio 
  

  
 we may obtain any desired secondary 

voltage from a given primary voltage. If       as in Fig. 65, then       and we 

have a step-up transformer; if      , then       and we have a step-down 

transformer. At a power generating station, step-up transformers are used; the 

primary is connected to the power source and the secondary is connected to the 

transmission lines, giving the desired high voltage for transmission. Near the 

consumer, step-down transformers lower the voltage to a value suitable for use in 

home or industry (Fig. 66). 

 

 
Figure 66 – The cylindrical can near the top of this power pole is a step-down 

transformer. It converts the high-voltage ac in the power lines to low-voltage (120 V) 

ac, which is then distributed to the surrounding homes and businesses 

 

Even the relatively low voltage provided by a household wall socket is too high 

for many electronic devices, so a further step-down transformer is necessary. This is 

the role of an “ac adapter” such as those used to recharge a mobile phone or laptop 

computer from line voltage. Such adapters contain a step-down transformer that 

converts line voltage to a lower value, typically 3 to 12 volts, as well as diodes to 

convert alternating current to the direct current that small electronic devices require 

(Fig. 67). 
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Figure 67 - An ac adapter like this one converts household ac into low-voltage dc for 

use in electronic devices. It contains a step-down transformer to lower the voltage 

and diodes to rectify the output current 

 

Energy Considerations for Transformers. If the secondary circuit is 

completed by a resistance then the amplitude or rms value of the current in the 

secondary circuit is        . From energy considerations, the power delivered to 

the primary equals that taken out of the secondary (since there is no resistance in the 

windings), so 

 

          (157) 
 

We can combine Eqs. (156) and (157) and the relationship         to eliminate    

and    we obtain 

 
  
  
 

 

       
 
 

(158) 

 

This shows that when the secondary circuit is completed through a resistance  , the 

result is the same as if the source had been connected directly to a resistance equal to 

  divided by the square of the turns ratio,        
 . In other words, the transformer 

“transforms” not only voltages and currents, but resistances as well. More generally, 

we can regard a transformer as “transforming” the impedance of the network to 

which the secondary circuit is completed. 

Equation (158) has many practical consequences. The power supplied by a 

source to a resistor depends on the resistances of both the resistor and the source. It 

can be shown that the power transfer is greatest when the two resistances are equal. 

The same principle applies in both dc and ac circuits. When a high-impedance ac 

source must be connected to a low-impedance circuit, such as an audio amplifier 

connected to a loudspeaker, the source impedance can be matched to that of the 

circuit by the use of a transformer with an appropriate turns ratio      . 
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Real transformers always have some energy losses. (That’s why an ac adapter 

like the one shown in Fig. 67 feels warm to the touch after it’s been in use for a 

while; the transformer is heated by the dissipated energy.) The windings have some 

resistance, leading to     losses. There are also energy losses through hysteresis in 

the core. Hysteresis losses are minimized by the use of soft iron with a narrow 

hysteresis loop. 

Another important mechanism for energy loss in a transformer core involves 

eddy currents. Consider a section AA through an iron transformer core (Fig. 68a). 

Since iron is a conductor, any such section can be pictured as several conducting 

circuits, one within the other (Fig. 64b). The flux through each of these circuits is 

continually changing, so eddy currents circulate in the entire volume of the core, with 

lines of flow that form planes perpendicular to the flux. These eddy currents are very 

undesirable; they waste energy through     heating and themselves set up an 

opposing flux. 

 

 
Figure 68 - (a) Primary and secondary windings in a transformer. (b) Eddy currents in 

the iron core, shown in the cross section at AA. (c) Using a laminated core reduces the 

eddy currents 

 

The effects of eddy currents can be minimized by the use of a laminated core— 

that is, one built up of thin sheets or laminae. The large electrical surface resistance of 

each lamina, due either to a natural coating of oxide or to an insulating varnish, 

effectively confines the eddy currents to individual laminae (Fig. 68c). The possible 

eddy-current paths are narrower, the induced emf in each path is smaller, and the 

eddy currents are greatly reduced. The alternating magnetic field exerts forces on the 

current-carrying laminae that cause them to vibrate back and forth; this vibration 

causes the characteristic “hum” of an operating transformer. You can hear this same 

“hum” from the magnetic ballast of a fluorescent light fixture. Thanks to the use of 

soft iron cores and lamination, transformer efficiencies are usually well over 90%; in 

large installations they may reach 99%. 

 
Discussion questions 

1. Household electric power in most of western Europe is supplied at 240 V, 

rather than the 120 V that is standard in the United States and Canada. What 

are the advantages and disadvantages of each system? 
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2. The current in an ac power line changes direction 120 times per second, and its 

average value is zero. Explain how it is possible for power to be transmitted in 

such a system. 

3. In an ac circuit, why is the average power for an inductor and a capacitor zero, 

but not for a resistor? 

4. Fluorescent lights often use an inductor, called a ballast, to limit the current 

through the tubes. Why is it better to use an inductor rather than a resistor for 

this purpose? 

5. Is it possible for the power factor of an L-R-C series ac circuit to be zero? 

Justify your answer on physical grounds. 

6. In an L-R-C series circuit, can the instantaneous voltage across the capacitor 

exceed the source voltage at that same instant? Can this be true for the 

instantaneous voltage across the inductor? Across the resistor? Explain. 

7. In an L-R-C series circuit, what are the phase angle and power factor cosφ 

when the resistance is much smaller than the inductive or capacitive reactance 

and the circuit is operated far from resonance? Explain. 

8. When an L-R-C series circuit is connected across a 120-V ac line, the voltage 

rating of the capacitor may be exceeded even if it is rated at 200 or 400 V. 

How can this be? 

9. A light bulb and a parallel-plate capacitor with air between the plates are 

connected in series to an ac source. What happens to the brightness of the bulb 

when a dielectric is inserted between the plates of the capacitor? Explain. 

10. A coil of wire wrapped on a hollow tube and a light bulb are connected in 

series to an ac source. What happens to the brightness of the bulb when an iron 

rod is inserted in the tube? 

11. A circuit consists of a light bulb, a capacitor, and an inductor connected in 

series to an ac source. What happens to the brightness of the bulb when the 

inductor is removed? When the inductor is left in the circuit but the capacitor is 

removed? Explain. 

12. A circuit consists of a light bulb, a capacitor, and an inductor connected in 

series to an ac source. Is it possible for both the capacitor and the inductor to 

be removed and the brightness of the bulb to remain the same? Explain. 

13. Can a transformer be used with dc? Explain. What happens if a transformer 

designed for 120-V ac is connected to a120-V dc line? 

14. An ideal transformer has N1 windings in the primary and N2 windings in its 

secondary. If you double only the number of secondary windings, by what 

factor does (a) the voltage amplitude in the secondary change, and (b) the 

effective resistance of the secondary circuit change? 

15. Some electrical appliances operate equally well on ac or dc, and others work 

only on ac or only on dc. Give examples of each, and explain the differences. 
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Topic 2 Optics 
 
 

2.1 Geometrical optics 
 

2.1.1 The nature of the light 

 

Until the time of Isaac Newton (1642–1727), most scientists thought that light 

consisted of streams of particles (called corpuscles) emitted by light sources. Galileo 

and others tried (unsuccessfully) to measure the speed of light. Around 1665, 

evidence of wave properties of light began to be discovered. By the early 19th 

century, evidence that light is a wave had grown very persuasive. 

In 1873, James Clerk Maxwell predicted the existence of electromagnetic 

waves and calculated their speed of propagation. This development, along with the 

experimental work of Heinrich Hertz starting in 1887, showed conclusively that light 

is indeed an electromagnetic wave. 

The Two Personalities of Light. The wave picture of light is not the whole 

story, however. Several effects associated with emission and absorption of light 

reveal a particle aspect, in that the energy carried by light waves is packaged in 

discrete bundles called photons or quanta. These apparently contradictory wave and 

particle properties have been reconciled since 1930 with the development of quantum 

electrodynamics, a comprehensive theory that includes both wave and particle 

properties. The propagation of light is best described by a wave model, but 

understanding emission and absorption requires a particle approach. 

 

 
Figure 69 - An electric heating element emits primarily infrared radiation. But if its 

temperature is high enough, it also emits a discernible amount of visible light 

 

The fundamental sources of all electromagnetic radiation are electric charges in 

accelerated motion. All bodies emit electromagnetic radiation as a result of thermal 

motion of their molecules; this radiation, called thermal radiation, is a mixture of 

different wavelengths. At sufficiently high temperatures, all matter emits enough 
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visible light to be self-luminous; a very hot body appears “red-hot” (Fig. 69) or 

“white-hot.” Thus hot matter in any form is a light source. Familiar examples are a 

candle flame, hot coals in a campfire, the coils in an electric room heater, and an 

incandescent lamp filament (which usually operates at a temperature of about 

     ). 

Light is also produced during electrical discharges through ionized gases. The 

bluish light of mercury-arc lamps, the orange-yellow of sodium-vapor lamps, and the 

various colors of “neon” signs are familiar. A variation of the mercury-arc lamp is the 

fluorescent lamp. This light source uses a material called a phosphor to convert the 

ultraviolet radiation from a mercury arc into visible light. This conversion makes 

fluorescent lamps more efficient than incandescent lamps in transforming electrical 

energy into light. 

In most light sources, light is emitted independently by different atoms within 

the source; in a laser, by contrast, atoms are induced to emit light in a cooperative, 

coherent fashion. The result is a very narrow beam of radiation that can be 

enormously intense and that is much more nearly monochromatic, or 

singlefrequency, than light from any other source. Lasers are used by physicians for 

microsurgery, in a DVD or Blu-ray player to scan the information recorded on a 

video disc, in industry to cut through steel and to fuse high-melting-point materials, 

and in many other applications (Fig. 70). 

 

 
Figure 70 - Ophthalmic surgeons use lasers for repairing detached retinas and for 

cauterizing blood vessels in retinopathy. Pulses of blue-green light from an argon 

laser are ideal for this purpose, since they pass harmlessly through the transparent 

part of the eye but are absorbed by red pigments in the retina 

 

No matter what its source, electromagnetic radiation travels in vacuum at the 

same speed. The speed of light in vacuum is defined to be 
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or           to three significant figures. The duration of one second is defined by 

the cesium clock, so one meter is defined to be the distance that light travels in 

             . 
We often use the concept of a wave front to describe wave propagation. More 

generally, we define a wave front as the locus of all adjacent points at which the 

phase of vibration of a physical quantity associated with the wave is the same. That 

is, at any instant, all points on a wave front are at the same part of the cycle of their 

variation. 

When we drop a pebble into a calm pool, the expanding circles formed by the 

wave crests, as well as the circles formed by the wave troughs between them, are 

wave fronts. Similarly, when sound waves spread out in still air from a pointlike 

source, or when electromagnetic radiation spreads out from a pointlike emitter, any 

spherical surface that is concentric with the source is a wave front, as shown in Fig. 

71. In diagrams of wave motion we usually draw only parts of a few wave fronts, 

often choosing consecutive wave fronts that have the same phase and thus are one 

wavelength apart, such as crests of water waves. Similarly, a diagram for sound 

waves might show only the “pressure crests,” the surfaces over which the pressure is 

maximum, and a diagram for electromagnetic waves might show only the “crests” on 

which the electric or magnetic field is maximum. 

 

 
Figure 71 - Spherical wave fronts of sound spread out uniformly in all directions 

from a point source in a motionless medium, such as still air, that has the same 

properties in all regions and in all directions. Electromagnetic waves in vacuum also 

spread out as shown here 

 

We will often use diagrams that show the shapes of the wave fronts or their 

cross sections in some reference plane. For example, when electromagnetic waves are 
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radiated by a small light source, we can represent the wave fronts as spherical 

surfaces concentric with the source or, as in Fig. 72a, by the circular intersections of 

these surfaces with the plane of the diagram. Far away from the source, where the 

radii of the spheres have become very large, a section of a spherical surface can be 

considered as a plane, and we have a plane wave like those discussed early (Fig, 

72b). 

 

 
Figure 72 – Wave fronts (blue) and rays (purple) 

 

To describe the directions in which light propagates, it’s often convenient to 

represent a light wave by rays rather than by wave fronts. Rays were used to describe 

light long before its wave nature was firmly established. In a particle theory of light, 

rays are the paths of the particles. From the wave viewpoint a ray is an imaginary 

line along the direction of travel of the wave. In Fig. 72a the rays are the radii of the 

spherical wave fronts, and in Fig. 72b they are straight lines perpendicular to the 

wave fronts. When waves travel in a homogeneous isotropic material (a material with 

the same properties in all regions and in all directions), the rays are always straight 

lines normal to the wave fronts. At a boundary surface between two materials, such 

as the surface of a glass plate in air, the wave speed and the direction of a ray may 

change, but the ray segments in the air and in the glass are straight lines. 

The next several chapters will give you many opportunities to see the interplay 

of the ray, wave, and particle descriptions of light. The branch of optics for which the 

ray description is adequate is called geometric optics; the branch dealing specifically 

with wave behavior is called physical optics. This chapter and the following one are 

concerned mostly with geometric optics.  

 

2.1.2 Reflection and refraction 
 

In this section we’ll use the ray model of light to explore two of the most 

important aspects of light propagation: reflection and refraction. When a light wave 

strikes a smooth interface separating two transparent materials (such as air and glass 

or water and glass), the wave is in general partly reflected and partly refracted 

(transmitted) into the second material, as shown in Fig. 73a. For example, when you 

look into a restaurant window from the street, you see a reflection of the street scene, 

but a person inside the restaurant can look out through the window at the same scene 

as light reaches him by refraction. 
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Figure 73 - (a) A plane wave is in part reflected and in part refracted at the boundary 

between two media (in this case, air and glass). The light that reaches the inside of 

the coffee shop is refracted twice, once entering the glass and once exiting the glass. 

(b), (c) How light behaves at the interface between the air outside the coffee shop 

(material a) and the glass (material b). For the case shown here, material b has a 

larger index of refraction than material a         and the angle    is smaller than 

   

 

The segments of plane waves shown in Fig. 73a can be represented by bundles 

of rays forming beams of light (Fig. 73b). For simplicity we often draw only one ray 

in each beam (Fig. 73c). Representing these waves in terms of rays is the basis of 

geometric optics. We begin our study with the behavior of an individual ray. 

We describe the directions of the incident, reflected, and refracted (transmitted) 

rays at a smooth interface between two optical materials in terms of the angles they 

make with the normal (perpendicular) to the surface at the point of incidence, as 

shown in Fig. 73c. If the interface is rough, both the transmitted light and the 

reflected light are scattered in various directions, and there is no single angle of 

transmission or reflection. Reflection at a definite angle from a very smooth surface 

is called specular reflection (from the Latin word for “mirror”); scattered reflection 

from a rough surface is called diffuse reflection. This distinction is shown in Fig. 74. 

Both kinds of reflection can occur with either transparent materials or opaque 

materials that do not transmit light. The vast majority of objects in your environment 

(including plants, other people, and this book) are visible to you because they reflect 

light in a diffuse manner from their surfaces. Our primary concern, however, will be 

with specular reflection from a very smooth surface such as highly polished glass or 

metal. Unless stated otherwise, when referring to “reflection” we will always mean 

specular reflection. 
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Figure 74 - Two types of reflection 

 

The index of refraction of an optical material (also called the refractive 

index), denoted by plays a central role in geometric optics. It is the ratio of the speed 

of light in vacuum to the speed in the material: 

 

  
 

 
 (159) 

 

Light always travels more slowly in a material than in vacuum, so the value of in 

anything other than vacuum is always greater than unity. For vacuum, n = 1. Since n 

is a ratio of two speeds, it is a pure number without units. 

Experimental studies of the directions of the incident, reflected, and refracted 

rays at a smooth interface between two optical materials lead to the following 

conclusions (Fig. 75): 

1. The incident, reflected, and refracted rays and the normal to the surface 

all lie in the same plane. The plane of the three rays and the normal, called the 

plane of incidence, is perpendicular to the plane of the boundary surface 

between the two materials. We always draw ray diagrams so that the incident, 

reflected, and refracted rays are in the plane of the diagram. 

2. The angle of reflection is equal to the angle of incidence for all 

wavelengths and for any pair of materials. That is, in Fig. 73c, 

 

      (160) 
 

This relationship, together with the observation that the incident and reflected rays 

and the normal all lie in the same plane, is called the law of reflection. 
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Figure 33.7 75– The laws of refraction and reflection 

 

3. For monochromatic light and for a given pair of materials, a and b on opposite 

sides of the interface, the ratio of the sines of the angles    and   , where 

both angles are measured from the normal to the surface, is equal to the 

inverse ratio of the two indexes of refraction: 

 
     
     

 
  
  

 

or 

                

(161) 

 

 

(162) 

 

This experimental result, together with the observation that the incident and 

refracted rays and the normal all lie in the same plane, is called the law of refraction 

or Snell’s law, after the Dutch scientist Willebrord Snell (1591–1626). There is some 

doubt that Snell actually discovered it. The discovery that   
 

 
 came much later. 

While these results were first observed experimentally, they can be derived 

theoretically from a wave description of light. 

Equations (161) and (162) show that when a ray passes from one material (a) 

into another material (b) having a larger index of refraction         and hence a 

slower wave speed, the angle    with the normal is smaller in the second material 

than the angle    in the first; hence the ray is bent toward the normal (Fig. 76a). 

When the second material has a smaller index of refraction than the first material 

        and hence a faster wave speed, the ray is bent away from the normal (Fig. 

76b). 
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Figure 76 - Refraction and reflection in three cases. (a) Material b has a larger index 

of refraction than material a. (b) Material b has a smaller index of refraction than 

material a. (c) The incident light ray is normal to the interface between the materials 

 

No matter what the materials on either side of the interface, in the case of 

normal incidence the transmitted ray is not bent at all (Fig. 76c). In this case      

and        , so from Eq. (162)    is also equal to zero, so the transmitted ray is 

also normal to the interface. Equation (160) shows that   , too, is equal to zero, so the 

reflected ray travels back along the same path as the incident ray. 

 

 
Figure 77 - (a) This ruler is actually straight, but it appears to bend at the surface of 

the water. (b) Light rays from any submerged object bend away from the normal 

when they emerge into the air. As seen by an observer above the surface of the water, 

the object appears to be much closer to the surface than it actually is 

 

The law of refraction explains why a partially submerged ruler or drinking 

straw appears bent; light rays coming from below the surface change in direction at 
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the air–water interface, so the rays appear to be coming from a position above their 

actual point of origin (Fig. 77). A similar effect explains the appearance of the setting 

sun (Fig. 78). 

 

 
Figure 78 - (a) The index of refraction of air is slightly greater than 1, so light rays 

from the setting sun bend downward when they enter our atmosphere. (The effect is 

exaggerated in this figure.) (b) Stronger refraction occurs for light coming from the 

lower limb of the sun (the part that appears closest to the horizon), which passes 

through denser air in the lower atmosphere. As a result, the setting sun appears 

flattened vertically 

 

An important special case is refraction that occurs at an interface between 

vacuum, for which the index of refraction is unity by definition, and a material. When 

a ray passes from vacuum into a material (b), so that      and     the ray is 

always bent toward the normal. When a ray passes from a material into vacuum, so 

that      and     , the ray is always bent away from the normal. 

The laws of reflection and refraction apply regardless of which side of the 

interface the incident ray comes from. If a ray of light approaches the interface in Fig. 

76a or 76b from the right rather than from the left, there are again reflected and 

refracted rays; these two rays, the incident ray, and the normal to the surface again lie 

in the same plane. Furthermore, the path of a refracted ray is reversible; it follows the 

same path when going from b to a as when going from a to b [You can verify this 

using Eq. (162).] Since reflected and incident rays make the same angle with the 

normal, the path of a reflected ray is also reversible. That’s why when you see 

someone’s eyes in a mirror, they can also see you. 

The intensities of the reflected and refracted rays depend on the angle of 

incidence, the two indexes of refraction, and the polarization (that is, the direction of 

the electric-field vector) of the incident ray. The fraction reflected is smallest at 

normal incidence        , where it is about 4% for an air–glass interface. This 



118 
 

fraction increases with increasing angle of incidence to 100% at grazing incidence, 

when       . 

It’s possible to use Maxwell’s equations to predict the amplitude, intensity, 

phase, and polarization states of the reflected and refracted waves. Such an analysis is 

beyond our scope, however. 

The index of refraction depends not only on the substance but also on the 

wavelength of the light. The dependence on wavelength is called dispersion. Indexes 

of refraction for several solids and liquids are given in Table 3 for a particular 

wavelength of yellow light. 

The index of refraction of air at standard temperature and pressure is about 

1.0003, and we will usually take it to be exactly unity. The index of refraction of a 

gas increases as its density increases. Most glasses used in optical instruments have 

indexes of refraction between about 1.5 and 2.0. A few substances have larger 

indexes; one example is diamond, with 2.417. 

 

Table 3 – Index of refraction for yellow sodium light (wavelength 589 nm) 

Substance Index of refraction 

Solids  

Ice 1.309 

Fluorite 1.434 

Polystyrene 1.49 

Rock salt 1.544 

Quartz 1.544 

Zircon 1.923 

Diamond 2.417 

Fabulite 2.409 

Rutile 2.62 

Gases (typical values)  

Crown 1.52 

Light flint 1.58 

Medium flint 1.62 

Dense flint 1.66 

Lanthanum flint 1.8 

Liquids at 20   

Methanol 1.329 

Water 1.333 

Ethanol 1.36 

Carbon tetrachloride 1.46 

Turpentine 1.472 

Glycerine 1.473 

Benzene 1.501 

Carbon disulfide 1.628 
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We have discussed how the direction of a light ray changes when it passes 

from one material to another material with a different index of refraction. It’s also 

important to see what happens to the wave characteristics of the light when this 

happens. 

First, the frequency   of the wave does not change when passing from one 

material to another. That is, the number of wave cycles arriving per unit time must 

equal the number leaving per unit time; this is a statement that the boundary surface 

cannot create or destroy waves. 

Second, the wavelength   of the wave is different in general in different 

materials. This is because in any material,     ; since   is the same in any material 

as in vacuum and   is always less than the wave speed   in vacuum,   is also 

correspondingly reduced. Thus the wavelength   of light in a material is less than the 

wavelength    of the same light in vacuum. From the above discussion,        
   . Combining this with Eq. (159),      , we find 

 

  
  
 

 
(163) 

 

When a wave passes from one material into a second material with larger index of 

refraction, so that      , the wave speed decreases. The wavelength          

in the second material is then shorter than the wavelength          in the first 

material. If instead the second material has a smaller index of refraction than the first 

material, so that then the wave speed increases. Then the wavelength    in the second 

material is longer than the wavelength    in the first material. This makes intuitive 

sense; the waves get “squeezed” (the wavelength gets shorter) if the wave speed 

decreases and get “stretched” (the wavelength gets longer) if the wave speed 

increases. 

 
2.1.3 Plane and spherical surface 

 

Before discussing what is meant by an image, we first need the concept of 

object as it is used in optics. By an object we mean anything from which light rays 

radiate. This light could be emitted by the object itself if it is self-luminous, like the 

glowing filament of a light bulb. Alternatively, the light could be emitted by another 

source (such as a lamp or the sun) and then reflected from the object; an example is 

the light you see coming from the pages of this book. Figure 79 shows light rays 

radiating in all directions from an object at a point P. For an observer to see this 

object directly, there must be no obstruction between the object and the observer’s 

eyes. Note that light rays from the object reach the observer’s left and right eyes at 

different angles; these differences are processed by the observer’s brain to infer the 

distance from the observer to the object. 
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Figure 79 - Light rays radiate from a point object P in all directions 

 

The object in Fig. 79 is a point object that has no physical extent. Real objects 

with length, width, and height are called extended objects. To start with, we’ll 

consider only an idealized point object, since we can always think of an extended 

object as being made up of a very large number of point objects. 

Suppose some of the rays from the object strike a smooth, plane reflecting 

surface (Fig. 80). This could be the surface of a material with a different index of 

refraction, which reflects part of the incident light, or a polished metal surface that 

reflects almost 100% of the light that strikes it. We will always draw the reflecting 

surface as a black line with a shaded area behind it, as in Fig. 80. Bathroom mirrors 

have a thin sheet of glass that lies in front of and protects the reflecting surface; we’ll 

ignore the effects of this thin sheet. 

 

 
Figure 80 - Light rays from the object at point P are reflected from a plane mirror. 

The reflected rays entering the eye look as though they had come from image point 

P’ 

 

According to the law of reflection, all rays striking the surface are reflected at 

an angle from the normal equal to the angle of incidence. Since the surface is plane, 

the normal is in the same direction at all points on the surface, and we have specular 

reflection. After the rays are reflected, their directions are the same as though they 

had come from point P’. We call point P an object point and point the corresponding 
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image point, and we say that the reflecting surface forms an image of point P. An 

observer who can see only the rays reflected from the surface, and who doesn’t know 

that he’s seeing a reflection, thinks that the rays originate from the image point P’. 

The image point is therefore a convenient way to describe the directions of the 

various reflected rays, just as the object point P describes the directions of the rays 

arriving at the surface before reflection. 

If the surface in Fig. 80 were not smooth, the reflection would be diffuse, and 

rays reflected from different parts of the surface would go in uncorrelated directions 

(see Fig. 74b). In this case there would not be a definite image point from which all 

reflected rays seem to emanate. You can’t see your reflection in the surface of a 

tarnished piece of metal because its surface is rough; polishing the metal smoothes 

the surface so that specular reflection occurs and a reflected image becomes visible. 

An image is also formed by a plane refracting surface, as shown in Fig. 81. 

Rays coming from point P are refracted at the interface between two optical 

materials. When the angles of incidence are small, the final directions of the rays 

after refraction are the same as though they had come from point as shown, and again 

we call an image point. Early we described how this effect makes underwater objects 

appear closer to the surface than they really are (see Fig. 77). 

 

 
Figure 81 - Light rays from the object at point P are refracted at the plane interface. 

The refracted rays entering the eye look as though they had come from image point 

P’ 

 

In both Figs. 80 and 81 the rays do not actually pass through the image point 

P’. Indeed, if the mirror in Fig. 80 is opaque, there is no light at all on its right side. If 

the outgoing rays don’t actually pass through the image point, we call the image a 

virtual image. Later we will see cases in which the outgoing rays really do pass 

through an image point, and we will call the resulting image a real image. The 

images that are formed on a projection screen, on the photographic film in a camera, 

and on the retina of your eye are real images. 

Image Formation by a Plane Mirror. Let’s concentrate for now on images 

produced by reflection; we’ll return to refraction later in the chapter. To find the 

precise location of the virtual image P’ that a plane mirror forms of an object at P, we 

use the construction shown in Fig. 82. The figure shows two rays diverging from an 
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object point P at a distance s to the left of a plane mirror. We call s the object 

distance. The ray PV is incident normally on the mirror (that is, it is perpendicular to 

the mirror surface), and it returns along its original path. 

 

 
Figure 82 - Construction for determining the location of the image formed by a plane 

mirror. The image point P’ is as far behind the mirror as the object point P is in front 

of it 

 

The ray PB makes an angle   with PV. It strikes the mirror at an angle of 

incidence   and is reflected at an equal angle with the normal. When we extend the 

two reflected rays backward, they intersect at point P’, at a distance s’ behind the 

mirror. We call s’ the image distance. The line between P and P’ is perpendicular to 

the mirror. The two triangles PVB and P’VB are congruent, so P and P’ are at equal 

distances from the mirror, s’ and s and have equal magnitudes. The image point P’ is 

located exactly opposite the object point P as far behind the mirror as the object point 

is from the front of the mirror. 

We can repeat the construction of Fig. 82 for each ray diverging from P. The 

directions of all the outgoing reflected rays are the same as though they had 

originated at point P’, confirming that P’ is the image of P. No matter where the 

observer is located, she will always see the image at the point 

Sign Rules. Before we go further, let’s introduce some general sign rules. 

These may seem unnecessarily complicated for the simple case of an image formed 

by a plane mirror, but we want to state the rules in a form that will be applicable to 

all the situations we will encounter later. These will include image formation by a 

plane or spherical reflecting or refracting surface, or by a pair of refracting surfaces 

forming a lens. Here are the rules: 

1. Sign rule for the object distance: When the object is on the same side of 

the reflecting or refracting surface as the incoming light, the object distance s is 

positive; otherwise, it is negative. 

2. Sign rule for the image distance: When the image is on the same side of 

the reflecting or refracting surface as the outgoing light, the image distance is 

positive; otherwise, it is negative. 
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3. Sign rule for the radius of curvature of a spherical surface: When the 

center of curvature C is on the same side as the outgoing light, the radius of 

curvature is positive; otherwise, it is negative. 

Figure 83 illustrates rules 1 and 2 for two different situations. For a mirror the 

incoming and outgoing sides are always the same; for example, in Figs. 80, 82, and 

83a they are both on the left side. For the refracting surfaces in Figs. 81 and 83b the 

incoming and outgoing sides are on the left and right sides, respectively, of the 

interface between the two materials. (Note that other textbooks may use different 

rules.) 

 

 
Figure 83 - For both of these situations, the object distance s is positive (rule 1) and 

the image distance s¿ is negative (rule 2) 

 

In Figs. 82 and 83a the object distance s is positive because the object point P 

is on the incoming side (the left side) of the reflecting surface. The image distance s’ 

is negative because the image point P’ is not on the outgoing side (the left side) of the 

surface. The object and image distances s and s’ are related simply by 

 

      (164) 
 

For a plane reflecting or refracting surface, the radius of curvature is infinite 

and not a particularly interesting or useful quantity; in these cases we really don’t 

need sign rule 3. But this rule will be of great importance when we study image 

formation by curved reflecting and refracting surfaces later in the chapter. 

Reflection at a Spherical Surface. A plane mirror produces an image that is 

the same size as the object. But there are many applications for mirrors in which the 
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image and object must be of different sizes. A magnifying mirror used when applying 

makeup gives an image that is larger than the object, and surveillance mirrors (used 

in stores to help spot shoplifters) give an image that is smaller than the object. There 

are also applications of mirrors in which a real image is desired, so light rays do 

indeed pass through the image point A plane mirror by itself cannot perform any of 

these tasks. Instead, curved mirrors are used. 

 

 
Figure 84 - (a) A concave spherical mirror forms a real image of a point object P on 

the mirror’s optic axis. (b) The eye sees some of the outgoing rays and perceives 

them as having come from P’ 

 

Image of a Point Object: Spherical Mirror. We’ll consider the special (and 

easily analyzed) case of image formation by a spherical mirror. Figure 84a shows a 

spherical mirror with radius of curvature R, with its concave side facing the incident 

light. The center of curvature of the surface (the center of the sphere of which the 

surface is a part) is at C, and the vertex of the mirror (the center of the mirror 

surface) is at V. The line CV is called the optic axis. Point P is an object point that 
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lies on the optic axis; for the moment, we assume that the distance from P to V is 

greater than R. 

Ray PV, passing through C, strikes the mirror normally and is reflected back on 

itself. Ray PB, at an angle     with the axis, strikes the mirror at B, where the angles 

of incidence and reflection are  . The reflected ray intersects the axis at point P’. We 

will show shortly that all rays from P intersect the axis at the same point as in Fig. 

84b, provided that the angle is small. Point is therefore the image of object point P’. 

Unlike the reflected rays in Fig. 79, the reflected rays in Fig. 84b actually do intersect 

at point P’ then diverge from P’ as if they had originated at this point. Thus P’ is a 

real image.  

To see the usefulness of having a real image, suppose that the mirror is in a 

darkened room in which the only source of light is a self-luminous object at P. If you 

place a small piece of photographic film at P’ all the rays of light coming from point 

P that reflect off the mirror will strike the same point P’ on the film; when developed, 

the film will show a single bright spot, representing a sharply focused image of the 

object at point P. This principle is at the heart of most astronomical telescopes, which 

use large concave mirrors to make photographs of celestial objects. With a plane 

mirror like that in Fig. 80, placing a piece of film at the image point P’ would be a 

waste of time; the light rays never actually pass through the image point, and the 

image can’t be recorded on film. Real images are essential for photography. 

Let’s now find the location of the real image point P’ in Fig. 84a and prove the 

assertion that all rays from P intersect at P’ (provided that their angle with the optic 

axis is small). The object distance, measured from the vertex V, is s; the image 

distance, also measured from V, is s’. The signs of s, s’ and the radius of curvature R 

are determined by the sign rules given early. The object point P is on the same side as 

the incident light, so according to sign rule 1, s is positive. The image point P’ is on 

the same side as the reflected light, so according to sign rule 2, the image distance is 

also positive. The center of curvature C is on the same side as the reflected light, so 

according to sign rule 3, R, too, is positive; R is always positive when reflection 

occurs at the concave side of a surface 

(Fig. 85). 
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Figure 85 - The sign rule for the radius of a spherical mirror 

 

We now use the following theorem from plane geometry: An exterior angle of 

a triangle equals the sum of the two opposite interior angles. Applying this theorem to 

triangles PBC and P’BC in Fig. 84a, we have Eliminating between these equations 

gives 

 

            (165) 

 

Eliminating   between these equations gives 

 

       (166) 
 

We may now compute the image distance s’. Let h represent the height of point 

B above the optic axis, and let   represent the short distance from V to the foot of this 

vertical line. We now write expressions for the tangents of     and   remembering 

that s, s’ and R are all positive quantities: 

 

     
 

   
      

 

    
      

 

   
 

(167) 

 

These trigonometric equations cannot be solved as simply as the corresponding 

algebraic equations for a plane mirror. However, if the angle   is small, the angles   

and   are also small. The tangent of an angle that is much less than one radian is 

nearly equal to the angle itself (measured in radians), so we can replace      by  , 

and so on, in the equations above. Also, if   is small, we can neglect the distance   

compared with s’, s, and R. So for small angles we have the following approximate 

relationships: 

 

  
 

 
   

 

  
    

 

 
 

(168) 
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Substituting these into Eq. (166) and dividing by h, we obtain a general relationship 

among s, s’ and R: 

 
 

 
 
 

  
 
 

 
 

(169) 

 

This equation does not contain the angle  . Hence all rays from P that make 

sufficiently small angles with the axis intersect at P’ after they are reflected; this 

verifies our earlier assertion. Such rays, nearly parallel to the axis and close to it, are 

called paraxial rays. (The term paraxial approximation is often used for the 

approximations we have just described.) Since all such reflected light rays converge 

on the image point, a concave mirror is also called a converging mirror. 

 

 

 
Figure 86 - (a), (b) Soon after the Hubble Space Telescope (HST) was placed in orbit 

in 1990, it was discovered that the concave primary mirror (also called the objective 

mirror) was too shallow by about 1/50 the width of a human hair, leading to spherical 

aberration of the star’s image. (c) After corrective optics were installed in 1993, the 

effects of spherical aberration were almost completely eliminated. 

 

Be sure you understand that Eq. (169), as well as many similar relationships 

that we will derive later in this chapter and the next, is only approximately correct. It 

results from a calculation containing approximations, and it is valid only for paraxial 
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rays. If we increase the angle   that a ray makes with the optic axis, the point P’ 

where the ray intersects the optic axis moves somewhat closer to the vertex than for a 

paraxial ray. As a result, a spherical mirror, unlike a plane mirror, does not form a 

precise point image of a point object; the image is “smeared out.” This property of a 

spherical mirror is called spherical aberration. When the primary mirror of the 

Hubble Space Telescope (Fig. 86a) was manufactured, tiny errors were made in its 

shape that led to an unacceptable amount of spherical aberration (Fig. 86b). The 

performance of the telescope improved dramatically after the installation of 

corrective optics (Fig. 86c).  

If the radius of curvature becomes infinite       the mirror becomes plane, 

and Eq. (169) reduces to Eq. (164) for a plane reflecting surface. 

Focal Point and Focal Length. When the object point P is very far from the 

spherical mirror      , the incoming rays are parallel. (The star shown in Fig. 86c 

is an example of such a distant object.) From Eq. (169) the image distance in this case 

is given by 

 
 

 
 
 

  
 
 

 
    

 

 
 

(170) 

 

The situation is shown in Fig. 87a. The beam of incident parallel rays converges, after 

reflection from the mirror, to a point F at a distance R/2 from the vertex of the mirror. 

The point F at which the incident parallel rays converge is called the focal point; we 

say that these rays are brought to a focus. The distance from the vertex to the focal 

point, denoted by is called the focal length. We see that is related to the radius of 

curvature R by 
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The opposite situation is shown in Fig. 87b. Now the object is placed at the 

focal point F, so the object distance is        . The image distance s’ is again 

given by Eq. (169): 
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With the object at the focal point, the reflected rays in Fig. 87b are parallel to the 

optic axis; they meet only at a point infinitely far from the mirror, so the image is at 

infinity. 
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Figure 87 – The focal point and focal length of a concave mirror 

 

Thus the focal point F of a spherical mirror has the properties that (1) any 

incoming ray parallel to the optic axis is reflected through the focal point and (2) any 

incoming ray that passes through the focal point is reflected parallel to the optic axis. 

For spherical mirrors these statements are true only for paraxial rays. For parabolic 

mirrors these statements are exactly true; this is why parabolic mirrors are preferred 

for astronomical telescopes. Spherical or parabolic mirrors are used in flashlights and 

headlights to form the light from the bulb into a parallel beam. Some solar-power 

plants use an array of plane mirrors to simulate an approximately spherical concave 

mirror; light from the sun is collected by the mirrors and directed to the focal point, 

where a steam boiler is placed. 

We will usually express the relationship between object and image distances 

for a mirror, Eq. (169), in terms of the focal length  : 

 
 

 
 
 

  
 
 

 
 

(173) 

 

Convex Mirrors. In Fig. 88a the convex side of a spherical mirror faces the 

incident light. The center of curvature is on the side opposite to the outgoing rays; 

according to sign rule 3, R is negative (see Fig. 85). Ray PB is reflected, with the 

angles of incidence and reflection both equal to  . The reflected ray, projected 

backward, intersects the axis at As with a concave mirror, all rays from P that are 

reflected by the mirror diverge from the same point P’, provided that the angle   is 

small. Therefore P’ is the image of P. The object distance s is positive, the image 

distance s’ is negative, and the radius of curvature R is negative for a convex mirror. 
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Figure 88 – Image formation by a convex mirror 

 

Figure 88b shows two rays diverging from the head of the arrow PQ and the 

virtual image P’Q’ of this arrow. The same procedure that we used for a concave 

mirror can be used to show that for a convex mirror, 

 
 

 
 
 

  
 
 

 
 

(174) 

 

and the lateral magnification is 
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Figure 89 – The focal point and focal length of a convex mirror 

 

These expressions are exactly the same as Eqs. (169) and (170) for a concave mirror. 

Thus when we use our sign rules consistently, Eqs. (169) and (170) are valid for both 

concave and convex mirrors. 

When R is negative (convex mirror), incoming rays that are parallel to theoptic 

axis are not reflected through the focal point F. Instead, they diverge as though they 
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had come from the point F at a distance f behind the mirror, as shown in Fig. 89a. In 

this case, f is the focal length, and F is called a virtual focal point. The corresponding 

image distance s’ is negative, so both and R are negative, and Eq. (171),      , 

holds for convex as well as concave mirrors. In Fig. 89b the incoming rays are 

converging as though they would meet at the virtual focal point F, and they are 

reflected parallel to the optic axis. 

In summary, Eqs. (169) through (174), the basic relationships for image 

formation by a spherical mirror, are valid for both concave and convex mirrors, 

provided that we use the sign rules consistently. 

Graphical Methods for Mirrors. We used Eqs. (173) and (174) to find the 

position and size of the image formed by a mirror. We can also determine the 

properties of the image by a simple graphical method. This method consists of 

finding the point of intersection of a few particular rays that diverge from a point of 

the object (such as point Q in Fig. 90) and are reflected by the mirror. Then 

(neglecting aberrations) all rays from this object point that strike the mirror will 

intersect at the same point. For this construction we always choose an object point 

that is not on the optic axis. Four rays that we can usually draw easily are shown in 

Fig. 90. These are called principal rays. 

1. A ray parallel to the axis, after reflection, passes through the focal point F of 

a concave mirror or appears to come from the (virtual) focal point of a convex 

mirror. 

2. A ray through (or proceeding toward) the focal point F is reflected parallel 

to the axis. 

3. A ray along the radius through or away from the center of curvature C 

intersects the surface normally and is reflected back along its original path. 4. A 

ray to the vertex V is reflected forming equal angles with the optic axis. 

 

 
Figure 90 - The graphical method of locating an image formed by a spherical mirror. 

The colours of the rays are for identification only; they do not refer to specific 

colours of light 
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Once we have found the position of the image point by means of the intersection of 

any two of these principal rays we can draw the path of any other ray from the object 

point to the same image point. 

 

2.1.4 Thin lenses 

 

The most familiar and widely used optical device (after the plane mirror) is the 

lens. A lens is an optical system with two refracting surfaces. The simplest lens has 

two spherical surfaces close enough together that we can neglect the distance 

between them (the thickness of the lens); we call this a thin lens. If you wear 

eyeglasses or contact lenses while reading, you are viewing these words through a 

pair of thin lenses. We can analyze thin lenses in detail using the results for refraction 

by a single spherical surface. However, we postpone this analysis until later in the 

section so that we can first discuss the properties of thin lenses. 

Properties of a Lens. A lens of the shape shown in Fig. 91 has the property 

that when a beam of rays parallel to the axis passes through the lens, the rays 

converge to a point    (Fig. 91a) and form a real image at that point. Such a lens is 

called a converging lens. Similarly, rays passing through point emerge from the lens 

as a beam of parallel rays (Fig. 91b). The points    and    are called the first and 

second focal points, and the distance (measured from the center of the lens) is called 

the focal length. Note the similarities between the two focal points of a converging 

lens and the single focal point of a concave mirror (see Fig. 87). As for a concave 

mirror, the focal length of a converging lens is defined to be a positive quantity, and 

such a lens is also called a positive lens. 

 

 
Figure 91 -    and    are the first and second focal points of a converging thin lens. 

The numerical value of ƒ is positive 

 

The central horizontal line in Fig. 91 is called the optic axis, as with spherical 

mirrors. The centers of curvature of the two spherical surfaces lie on and define the 
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optic axis. The two focal lengths in Fig. 91, both labelled f, are always equal for a 

thin lens, even when the two sides have different curvatures. We will derive this 

somewhat surprising result later in the section, when we derive the relationship of f to 

the index of refraction of the lens and the radii of curvature of its surfaces. 

Image of an Extended Object: Converging Lens. Like a concave mirror, a 

converging lens can form an image of an extended object. Figure 92 shows how to 

find the position and lateral magnification of an image made by a thin converging 

lens. Using the same notation and sign rules as before, we let s and s’ be the object 

and image distances, respectively, and let y and y’ be the object and image heights. 

Ray QA, parallel to the optic axis before refraction, passes through the second focal 

point    after refraction. Ray QOQ’ passes undeflected straight through the center of 

the lens because at the center the two surfaces are parallel and (we have assumed) 

very close together. There is refraction where the ray enters and leaves the material 

but no net change in direction. 

 

 
Figure 92 - Construction used to find image position for a thin lens. To emphasize 

that the lens is assumed to be very thin, the ray QAQ’ is shown as bent at the 

midplane of the lens rather than at the two surfaces and ray QOQ’ is shown as a 

straight line 

 

The two angles labeled   in Fig. 92 are equal. Therefore the two right triangles 

PQO and P’Q’O’ are similar, and ratios of corresponding sides are equal. Thus 

 
 

 
  

  

 
 

or 

  

 
  

  

 
 

 

 

(176) 

 

(The reason for the negative sign is that the image is below the optic axis and y’ is 

negative.) Also, the two angles labeled   are equal, and the two right triangles      

and        are similar, so 
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We now equate Eqs. (176) and (177), divide by s’ and rearrange to obtain 

 
 

 
 
 

  
 
 

 
 

(178) 

 

This analysis also gives the lateral magnification        for the lens 

 

   
 

  
 (179) 

 

The negative sign tells us that when s and s’ are both positive, as in Fig. 92, the image 

is inverted, and y and y’ have opposite signs. 

Equations (178) and (179) are the basic equations for thin lenses. They are 

exactly the same as the corresponding equations for spherical mirrors, Eqs. (173) and 

(174). As we will see, the same sign rules that we used for spherical mirrors are also 

applicable to lenses. In particular, consider a lens with a positive focal length (a 

converging lens). When an object is outside the first focal point    of this lens (that 

is, when    ), the image distance is positive (that is, the image is on the same side 

as the outgoing rays); this image is real and inverted, as in Fig. 92. An object placed 

inside the first focal point of a converging lens, so that    , produces an image 

with a negative value of s’; this image is located on the same side of the lens as the 

object and is virtual, erect, and larger than the object. You can verify these statements 

algebraically using Eqs. (178) and (179); we’ll also verify them in the next section, 

using graphical methods analogous to those introduced for mirrors. 

Diverging Lenses. So far we have been discussing converging lenses. Figure 

93 shows a diverging lens; the beam of parallel rays incident on this lens diverges 

after refraction. The focal length of a diverging lens is a negative quantity, and the 

lens is also called a negative lens. The focal points of a negative lens are reversed, 

relative to those of a positive lens. The second focal point,   , of a negative lens is 

the point from which rays that are originally parallel to the axis appear to diverge 

after refraction, as in Fig. 93a. Incident rays converging toward the first focal point    

as in Fig. 93b, emerge from the lens parallel to its axis. You can see that a diverging 

lens has the same relationship to a converging lens as a convex mirror has to a 

concave mirror. 
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Figure 93 -    and    are the second and first focal points of a diverging thin lens, 

respectively. The numerical value of is negative 

 

Equations (178) and (179) apply to both positive and negative lenses. Figure 94 

shows various types of lenses, both converging and diverging. Here’s an important 

observation: Any lens that is thicker at its center than at its edges is a converging lens 

with positive ; and any lens that is thicker at its edges than at its center is a diverging 

lens with negative (provided that the lens has a greater index of refraction than the 

surrounding material). We can prove this using the lensmaker’s equation, which it is 

our next task to derive. 

 

 
Figure 94 – Various types of lenses 

 

The Lensmaker’s Equation. We’ll now derive Eq. (178) in more detail and at 

the same time derive the lensmaker’s equation, which is a relationship among the 

focal length the index of refraction n of the lens, and the radii of curvature    and    

of the lens surfaces. We use the principle that an image formed by one reflecting or 

refracting surface can serve as the object for a second reflecting or refracting surface. 

We begin with the somewhat more general problem of two spherical interfaces 

separating three materials with indexes of refraction       and    as shown in Fig. 

95. The object and image distances for the first surface are    and    , and those for 

the second surface are    and    . We assume that the lens is thin, so that the distance 

t between the two surfaces is small in comparison with the object and image distances 

and can therefore be neglected. This is usually the case with eyeglass lenses. Then    

and     have the same magnitude but opposite sign. For example, if the first image is 
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on the outgoing side of the first surface,     is positive. But when viewed as an object 

for the second surface, the first image is not on the incoming side of that surface. So 

we can say that        . 
 

 
Figure 95 - The image formed by the first surface of a lens serves as the object for the 

second surface. The distances     and    are taken to be equal; this is a good 

approximation if the lens thickness t is small. 

 

We need to use the single-surface equation, twice, once for each surface. The 

two resulting equations are 

 
  
  
 
  
  
  

     
  

 

  
  
 
  
  
  

     
  

 

(180) 

 

Ordinarily, the first and third materials are air or vacuum, so we set        . 

The second index    is that of the lens, which we can call simply n. Substituting 

these values and the relationship         we get 

 
 

  
 
 

  
  

   

  
 

 
 

  
 
 

  
  

   

  
 

(181) 

 

To get a relationship between the initial object position    and the final image 

position    .n we add these two equations. This eliminates the term       and we 

obtain 
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Finally, thinking of the lens as a single unit, we call the object distance simply s 

instead of    , and we call the final image distance    instead of    . Making these 

substitutions, we have 

 
 

 
 
 

  
       

 

  
 
 

  
  

(183) 

 

Now we compare this with the other thin-lens equation, Eq. (178). We see that 

the object and image distances s and s’ appear in exactly the same places in both 

equations and that the focal length is given by 

 
 

 
       

 

  
 
 

  
  

(184) 

 

This is the lensmaker’s equation. In the process of rederiving the relationship 

among object distance, image distance, and focal length for a thin lens, we have also 

derived an expression for the focal length   of a lens in terms of its index of 

refraction n and the radii of curvature    and    of its surfaces. This can be used to 

show that all the lenses in Fig. 94a are converging lenses with positive focal lengths 

and that all the lenses in Fig. 94b are diverging lenses with negative focal lengths. 

We use all our sign rules with Eqs. (183) and (184). For example, in Fig. 96, s, 

s’ and    are positive, but    is negative.  

 

 
Figure 96 - A converging thin lens with a positive focal length ƒ 

 

It is not hard to generalize Eq. (184) to the situation in which the lens is 

immersed in a material with an index of refraction greater than unity. We invite you 

to work out the lensmaker’s equation for this more general situation. 

We stress that the paraxial approximation is indeed an approximation! Rays 

that are at sufficiently large angles to the optic axis of a spherical lens will not be 

brought to the same focus as paraxial rays; this is the same problem of spherical 

aberration that plagues spherical mirrors. To avoid this and other limitations of thin 
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spherical lenses, lenses of more complicated shape are used in precision optical 

instruments. 

Graphical Methods for Lenses. We can determine the position and size of an 

image formed by a thin lens by using a graphical method very similar to the one we 

used in early for spherical mirrors. Again we draw a few special rays called principal 

rays that diverge from a point of the object that is not on the optic axis. The 

intersection of these rays, after they pass through the lens, determines the position 

and size of the image. In using this graphical method, we will consider the entire 

deviation of a ray as occurring at the midplane of the lens, as shown in Fig. 97. This 

is consistent with the assumption that the distance between the lens surfaces is 

negligible. 

 

 
Figure 97 - The graphical method of locating an image formed by a thin lens. The 

colours of the rays are for identification only; they do not refer to specific colours of 

light 

 

The three principal rays whose paths are usually easy to trace for lenses are 

shown in Fig. 97: 

1. A ray parallel to the axis emerges from the lens in a direction that passes 

through the second focal point    of a converging lens, or appears to come 

from the second focal point of a diverging lens. 

2. A ray through the center of the lens is not appreciably deviated; at the center 

of the lens the two surfaces are parallel, so this ray emerges at essentially the 

same angle at which it enters and along essentially the same line. 

3. A ray through (or proceeding toward) the first focal point    emerges 

parallel to the axis. 

When the image is real, the position of the image point is determined by the 

intersection of any two rays 1, 2, and 3 (Fig. 97a). When the image is virtual, we 

extend the diverging outgoing rays backward to their intersection point to find the 

image point (Fig. 97b). 

Figure 98 shows principal-ray diagrams for a converging lens for several object 

distances. We suggest you study each of these diagrams very carefully, comparing 

each numbered ray with the above description. 
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Figure 98 – Formation of images by a thin converging lens for various object 

distances. The principal rays are numbered 

 

Parts (a), (b), and (c) of Fig. 98 help explain what happens in focusing a 

camera. For a photograph to be in sharp focus, the film must be at the position of the 

real image made by the camera’s lens. The image distance increases as the object is 

brought closer, so the film is moved farther behind the lens (i.e., the lens is moved 

farther in front of the film). In Fig. 98d the object is at the focal point; ray 3 can’t be 

drawn because it doesn’t pass through the lens. In Fig. 98e the object distance is less 

than the focal length. The outgoing rays are divergent, and the image is virtual; its 

position is located by extending the outgoing rays backward, so the image distance s’ 

is negative. Note also that the image is erect and larger than the object. Figure 98f 

corresponds to a virtual object. The incoming rays do not diverge from a real object, 

but are converging as though they would meet at the tip of the virtual object O on the 

right side; the object distance s is negative in this case. The image is real and is 

located between the lens and the second focal point. This situation can arise if the 

rays that strike the lens in Fig. 98f emerge from another converging lens (not shown) 

to the left of the figure. 

 

Discussion questions  

1. A spherical mirror is cut in half horizontally. Will an image be formed by the 

bottom half of the mirror? If so, where will the image be formed? 

2. The laws of optics also apply to electromagnetic waves invisible to the eye. A 

satellite TV dish is used to detect radio waves coming from orbiting satellites. 

Why is a curved reflecting surface (a “dish”) used? The dish is always 
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concave, never convex; why? The actual radio receiver is placed on an arm and 

suspended in front of the dish. How far in front of the dish should it be placed? 

3. Explain why the focal length of a plane mirror is infinite, and explain what it 

means for the focal point to be at infinity. 

4. If a spherical mirror is immersed in water, does its focal length change? 

Explain. 

5. For what range of object positions does a concave spherical mirror form a real 

image? What about a convex spherical mirror? 

6. When a room has mirrors on two opposite walls, an infinite series of 

reflections can be seen. Discuss this phenomenon in terms of images. Why do 

the distant images appear fainter? 

7. For a spherical mirror, if s=f, then s’=∞ and the lateral magnification is 

infinite. Does this make sense? If so, what does it mean? 

8. You may have noticed a small convex mirror next to your bank’s ATM. Why 

is this mirror convex, as opposed to flat or concave? What considerations 

determine its radius of curvature? 

9. A student claims that she can start a fire on a sunny day using just the sun’s 

rays and a concave mirror. How is this done? Is the concept of image relevant? 

Can she do the same thing with a convex mirror? Explain. 

10. A person looks at his reflection in the concave side of a shiny spoon. Is it right 

side up or inverted? Does it matter how far his face is from the spoon? What if 

he looks in the convex side? (Try this yourself!) 

11. The bottom of the passenger-side mirror on your car notes, “Objects in mirror 

are closer than they appear.” Is this true? Why? 

12. How could you very quickly make an approximate measurement of the focal 

length of a converging lens? Could the same method be applied if you wished 

to use a diverging lens? Explain. 

13. The focal length of a simple lens depends on the color (wavelength) of light 

passing through it. Why? Is it possible for a lens to have a positive focal length 

for some colors and negative for others? Explain. 

14. When a converging lens is immersed in water, does its focal length increase or 

decrease in comparison with the value in air? Explain. 

15. A spherical air bubble in water can function as a lens. Is it a converging or 

diverging lens? How is its focal length related to its radius? 

16. Can an image formed by one reflecting or refracting surface serve as an object 

for a second reflection or refraction? Does it matter whether the first image is 

real or virtual? Explain. 

17. If a piece of photographic film is placed at the location of a real image, the film 

will record the image. Can this be done with a virtual image? How might one 

record a virtual image? 

18. You’ve entered a survival contest that will include building a crude telescope. 

You are given a large box of lenses. Which two lenses do you pick? How do 

you quickly identify them? 
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19. You can’t see clearly underwater with the naked eye, but you can if you wear a 

face mask or goggles (with air between your eyes and the mask or goggles). 

Why is there a difference? Could you instead wear eyeglasses (with water 

between your eyes and the eyeglasses) in order to see underwater? If so, should 

the lenses be converging or diverging? Explain. 

20. You take a lens and mask it so that light can pass through only the bottom half 

of the lens. How does the image formed by the masked lens compare to the 

image formed before masking? 

 

2.2 Interference 

 

2.2.1 Interference and coherent sources 

 

As we discussed early, the term interference refers to any situation in which 

two or more waves overlap in space. When this occurs, the total wave at any point at 

any instant of time is governed by the principle of superposition.. This principle 

also applies to electromagnetic waves and is the most important principle in all of 

physical optics. The principle of superposition states:  

When two or more waves overlap, the resultant displacement at any point 

and at any instant is found by adding the instantaneous displacements that 

would be produced at the point by the individual waves if each were present 

alone. 

(In some special situations, such as electromagnetic waves propagating in a crystal, 

this principle may not apply. A discussion of these is beyond our scope.) 

We use the term “displacement” in a general sense. With waves on the surface 

of a liquid, we mean the actual displacement of the surface above or below its normal 

level. With sound waves, the term refers to the excess or deficiency of pressure. For 

electromagnetic waves, we usually mean a specific component of electric or magnetic 

field. 

Interference in Two or Three Dimensions. We have already discussed one 

important case of interference, in which two identical waves propagating in opposite 

directions combine to produce a standing wave. We saw this in Chapters 15 and 16 

for transverse waves on a string and for longitudinal waves in a fluid filling a pipe; 

we described the same phenomenon for electromagnetic waves early. In all of these 

cases the waves propagated along only a single axis: along a string, along the length 

of a fluid-filled pipe, or along the propagation direction of an electromagnetic plane 

wave. But light waves can (and do) travel in two or three dimensions, as can any kind 

of wave that propagates in a two- or three-dimensional medium. In this section we’ll 

see what happens when we combine waves that spread out in two or three dimensions 

from a pair of identical wave sources. 

Interference effects are most easily seen when we combine sinusoidal waves 

with a single frequency   and wavelength  . Figure 99 shows a “snapshot” of a single 

source    of sinusoidal waves and some of the wave fronts produced by this source. 

The figure shows only the wave fronts corresponding to wave crests, so the spacing 
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between successive wave fronts is one wavelength. The material surrounding    is 

uniform, so the wave speed is the same in all directions, and there is no refraction 

(and hence no bending of the wave fronts). If the waves are two-dimensional, like 

waves on the surface of a liquid, the circles in Fig. 99 represent circular wave fronts; 

if the waves propagate in three dimensions, the circles represent spherical wave fronts 

spreading away from   . 

 In optics, sinusoidal waves are characteristic of monochromatic light (light of 

a single colour). While it’s fairly easy to make water waves or sound waves of a 

single frequency, common sources of light do not emit monochromatic (single-

frequency) light. For example, incandescent light bulbs and flames emit a continuous 

distribution of wavelengths. By far the most nearly monochromatic source that is 

available at present is the laser. An example is the helium–neon laser, which emits 

red light at 632.8 nm with a wavelength range of the order of or about one part in 

   . As we analyze interference and diffraction effects in this chapter and the next, 

we will assume that we are working with monochromatic waves (unless we explicitly 

state otherwise). 

 

 
Figure 99 - A “snapshot” of sinusoidal waves of frequency   and wavelength 

spreading out from source S1 in all directions 

 

Constructive and Destructive Interference. Two identical sources of 

monochromatic waves, and are shown in Fig. 100a. The two sources produce waves 

of the same amplitude and the same wavelength l. In addition, the two sources are 

permanently in phase; they vibrate in unison. They might be two loudspeakers driven 

by the same amplifier, two radio antennas powered by the same transmitter, or two 

small slits in an opaque screen, illuminated by the same monochromatic light source. 

We will see that if there were not a constant phase relationship between the two 

sources, the phenomena we are about to discuss would not occur. Two 

monochromatic sources of the same frequency and with a constant phase relationship 

(not necessarily in phase) are said to be coherent. We also use the term coherent 
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waves (or, for light waves, coherent light) to refer to the waves emitted by two such 

sources. 

If the waves emitted by the two coherent sources are transverse, like 

electromagnetic waves, then we will also assume that the wave disturbances 

produced by both sources have the same polarization (that is, they lie along the same 

line). For example, the sources    and    in Fig. 100a could be two radio antennas in 

the form of long rods oriented parallel to the z-axis (perpendicular to the plane of the 

figure); at any point in the xy-plane the waves produced by both antennas have     
fields with only a z-component. Then we need only a single scalar function to 

describe each wave; this makes the analysis much easier. 

We position the two sources of equal amplitude, equal wavelength, and (if the 

waves are transverse) the same polarization along the y-axis in Fig. 100a, equidistant 

from the origin. Consider a point a on the y-axis. From symmetry the two distances 

from    to a and from    to a are  equal; waves from the two sources thus require 

equal times to travel to a. Hence waves that leave    and    in phase arrive at a in 

phase. The two waves add, and the total amplitude at a is twice the amplitude of each 

individual wave. This is true for any point on the x-axis. 

 

 
Figure 100 - (a) A “snapshot” of sinusoidal waves spreading out from two coherent 

sources    and   . Constructive interference occurs at point a (equidistant from the 

two sources) and (b) at point b (c) Destructive interference occurs at point c. 
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Similarly, the distance from    to point b is exactly two wavelengths greater 

than the distance from    to b. A wave crest from    arrives at b exactly two cycles 

earlier than a crest emitted at the same time from   , and again the two waves arrive 

in phase. As at point a, the total amplitude is the sum of the amplitudes of the waves 

from    and   . 

In general, when waves from two or more sources arrive at a point in phase, 

they reinforce each other: The amplitude of the resultant wave is the sum of the 

amplitudes of the individual waves. This is called constructive interference (Fig. 

100b). Let the distance from    to any point P be   , and let the distance from    to P 

be   . For constructive interference to occur at P, the path difference       for the 

two sources must be an integral multiple of the wavelength λ: 

 

                                (185) 
 

In Fig. 100a, points a and b satisfy Eq. (185) with     and      respectively. 

Something different occurs at point c in Fig. 100a. At this point, the path 

difference           , which is a half-integral number of wavelengths. Waves 

from the two sources arrive at point exactly a half-cycle out of phase. A crest of one 

wave arrives at the same time as a crest in the opposite direction (a “trough”) of the 

other wave (Fig. 100c). The resultant amplitude is the difference between the two 

individual amplitudes. If the individual amplitudes are equal, then the total amplitude 

is zero! This cancellation or partial cancellation of the individual waves is called 

destructive interference. The condition for destructive interference in the situation 

shown in Fig. 100a is 

 

         
 

 
                          

(186) 

 

The path difference at point c in Fig. 100a satisfies Eq. (186) with     . 

Figure 101 shows the same situation as in Fig. 100a, but with red curves that 

show all positions where constructive interference occurs. On each curve, the path 

difference       is equal to an integer times the wavelength, as in Eq. (185). These 

curves are called antinodal curves. In a standing wave formed by interference 

between waves propagating in opposite directions, the antinodes are points at which 

the amplitude is maximum; likewise, the wave amplitude in the situation of Fig. 101 

is maximum along the antinodal curves. Not shown in Fig. 101 are the nodal curves, 

which are the curves that show where destructive interference occurs in accordance 

with Eq. (186); these are analogous to the nodes in a standing-wave pattern. A nodal 

curve lies between each two adjacent antinodal curves in Fig. 101; one such curve, 

corresponding to             passes through point 

In some cases, such as two loudspeakers or two radio-transmitter antennas, the 

interference pattern is three-dimensional. Think of rotating the colour curves of Fig. 

101 around the y-axis; then maximum constructive interference occurs at all points on 

the resulting surfaces of revolution. 



145 
 

For Eqs. (185) and (186) to hold, the two sources must have the same 

wavelength and must always be in phase. These conditions are rather easy to satisfy 

for sound waves. But with light waves there is no practical way to achieve a constant 

phase relationship (coherence) with two independent sources. This is because of the 

way light is emitted. In ordinary light sources, atoms gain excess energy by thermal 

agitation or by impact with accelerated electrons. Such an “excited” atom begins to 

radiate energy and continues until it has lost all the energy it can, typically in a time 

of the order of       . The many atoms in a source ordinarily radiate in an 

unsynchronized and random phase relationship, and the light that is emitted from two 

such sources has no definite phase relationship. 

 

 
Figure 101 - The same as Fig. 100a, but with red antinodal curves (curves of 

maximum amplitude) superimposed. All points on each curve satisfy Eq. (185) with 

the value of   shown. The nodal curves (not shown) lie between each adjacent pair 

of antinodal curves. 

 

However, the light from a single source can be split so that parts of it emerge 

from two or more regions of space, forming two or more secondary sources. Then 

any random phase change in the source affects these secondary sources equally and 

does not change their relative phase. 

The distinguishing feature of light from a laser is that the emission of light 

from many atoms is synchronized in frequency and phase. As a result, the random 

phase changes mentioned above occur much less frequently. Definite phase 



146 
 

relationships are preserved over correspondingly much greater lengths in the beam, 

and laser light is much more coherent than ordinary light. 

 

2.2.2 Two-sources interference of the light 
 

The interference pattern produced by two coherent sources of water waves of 

the same wavelength can be readily seen in a ripple tank with a shallow layer of 

water (Fig. 102). This pattern is not directly visible when the interference is between 

light waves, since light traveling in a uniform medium cannot be seen. (A shaft of 

afternoon sunlight in a room is made visible by scattering from airborne dust 

particles.) 

 

 
Figure 102 - The concepts of constructive interference and destructive interference 

apply to these water waves as well as to light waves and sound waves 

 

One of the earliest quantitative experiments to reveal the interference of light 

from two sources was performed in 1800 by the English scientist Thomas Young. We 

will refer back to this experiment several times in this and later chapters, so it’s 

important to understand it in detail. Young’s apparatus is shown in perspective in Fig. 

103a. A light source (not shown) emits monochromatic light; however, this light is 

not suitable for use in an interference experiment because emissions from different 

parts of an ordinary source are not synchronized. To remedy this, the light is directed 

at a screen with a narrow slit         or so wide. The light emerging from the slit 

originated from only a small region of the light source; thus slit behaves more nearly 

like the idealized source shown in Fig. 99. (In modern versions of the experiment, a 

laser is used as a source of coherent light, and the slit    isn’t needed.) The light from 

slit    falls on a screen with two other narrow slits    and   , each      or so wide 

and a few tens or hundreds of micrometers apart. Cylindrical wave fronts spread out 

from slit    and reach slits    and    in phase because they travel equal distances 
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from   . The waves emerging from slits    and    are therefore also always in phase, 

so    and    are coherent sources. The interference of waves from    and    

produces a pattern in space like that to the right of the sources in Figs. 100a and 101. 

To visualize the interference pattern, a screen is placed so that the light from    

and    falls on it (Fig. 103b). The screen will be most brightly illuminated at points 

P, where the light waves from the slits interfere constructively, and will be darkest at 

points where the interference is destructive. 

 

 

 
Figure 103 - (a) Young’s experiment to show interference of light passing through 

two slits. A pattern of bright and dark areas appears on the screen (see Fig. 104). (b) 

Geometrical analysis of Young’s experiment. For the case shown,       and both y 

and θ are positive. If point P is on the other side of the screen’s center,       and 

both y and θ are negative. (c) Approximate geometry when the distance   to the 

screen is much greater than the distance d between the slits 

 

To simplify the analysis of Young’s experiment, we assume that the distance   

from the slits to the screen is so large in comparison to the distance   between the 
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slits that the lines from    and    to P are very nearly parallel, as in Fig. 103c. This is 

usually the case for experiments with light; the slit separation is typically a few 

millimeters, while the screen may be a meter or more away. The differencein path 

length is then given by 

 

            (187) 
 

where   is the angle between a line from slits to screen (shown in blue in Fig. 103c) 

and the normal to the plane of the slits (shown as a thin black line). 

Constructive and Destructive Two-Slit Interference. We found early that 

constructive interference (reinforcement) occurs at points where the path difference is 

an integral number of wavelengths,   , where              . So the bright 

regions on the screen in Fig. 103a occur at angles θ for which 

 

                             (188) 
 

Similarly, destructive interference (cancellation) occurs, forming dark regions on the 

screen, at points for which the path difference is a half-integral number of 

wavelengths, : 

 

         
 

 
                       

(189) 

 

Thus the pattern on the screen of Figs. 103a and 103b is a succession of bright and 

dark bands, or interference fringes, parallel to the slits    and   . A photograph of 

such a pattern is shown in Fig. 104. The center of the pattern is a bright band 

corresponding to     in Eq. (188); this point on the screen is equidistant from the 

two slits. 

We can derive an expression for the positions of the centers of the bright bands 

on the screen. In Fig. 103b, is measured from the center of the pattern, corresponding 

to the distance from the center of Fig. 104. Let    be the distance from the center of 

the pattern (θ=0) to the center of the bright band. Let    be the corresponding value 

of θ; then 

 

          (190) 

 

In experiments such as this, the distances    are often much smaller than the distance 

  from the slits to the screen. Hence    is very small,       is very nearly equal to 

     , and 

 

          (191) 

 

Combining this with Eq. (188), we find that for small angles only, 
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(192) 

 

We can measure   and  , as well as the positions    of the bright fringes, so this 

experiment provides a direct measurement of the wavelength  . Young’s experiment 

was in fact the first direct measurement of wavelengths of light. 

 

 
Figure 104 – Photograph of interference fingers produced on a screen in Young’s 

double slit experiment 

 

The distance between adjacent bright bands in the pattern is inversely 

proportional to the distance d between the slits. The closer together the slits are, the 

more the pattern spreads out. When the slits are far apart, the bands in the pattern are 

closer together. 

While we have described the experiment that Young performed with visible 

light, the results given in Eqs. (188) and (189) are valid for any type of wave, 

provided that the resultant wave from two coherent sources is detected at a point that 

is far away in comparison to the separation d. 

 

Discussion questions 

1. A two-slit interference experiment is set up, and the fringes are displayed on a 

screen. Then the whole apparatus is immersed in the nearest swimming pool. 

How does the fringe pattern change? 

2. Could an experiment similar to Young’s two-slit experiment be performed with 

sound? How might this be carried out? Does it matter that sound waves are 

longitudinal and electromagnetic waves are transverse? Explain. 

3. Monochromatic coherent light passing through two thin slits is viewed on a 

distant screen. Are the bright fringes equally spaced on the screen? If so, why? 

If not, which ones are closest to being equally spaced? 
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4. In a two-slit interference pattern on a distant screen, are thebright fringes 

midway between the dark fringes? Is this ever a good approximation? 

5. Would the headlights of a distant car form a two-source interference pattern? If 

so, how might it be observed? If not, why not? 

6. Could the Young two-slit interference experiment be performed with gamma 

rays? If not, why not? If so, discuss differences in the experimental design 

compared to the experiment with visible light. 

7. Coherent red light illuminates two narrow slits that are 25 cm apart. Will a 

two-slit interference pattern be observed when the lightfrom the slits falls on a 

screen? Explain. 

8. Coherent light with wavelength λ falls on two narrow slits separated by a 

distance d. If d is less than some minimum value, no dark fringes are observed. 

Explain. In terms λ, of what is this minimum value of d. 

9. In using the superposition principle to calculate intensities in interference 

patterns, could you add the intensities of the waves instead of their amplitudes? 

Explain. 

10. A glass windowpane with a thin film of water on it reflects less than when it is 

perfectly dry. Why?  

11. A very thin soap film (n=1.33) whose thickness is much less than a wavelength 

of visible light, looks black; it appears to reflect no light at all. Why? By 

contrast, an equally thin layer of soapy water (n=1.333) on glass (n=1.5) 

appears quite shiny. Why is there a difference? 

12. Interference can occur in thin films. Why is it important that the films be thin? 

Why don’t you get these effects with a relatively thick film? Where should you 

put the dividing line between “thin” and “thick”? Explain your reasoning. 

13. Monochromatic light is directed at normal incidence on a thin film. There is 

destructive interference for the reflected light, so the intensity of the reflected 

light is very low. What happened to the energy of the incident light? 

14. When a thin oil film spreads out on a puddle of water, the thinnest part of the 

film looks dark in the resulting interference pattern. What does this tell you 

about the relative magnitudes of the refractive indexes of oil and water? 

 

2.3 Diffraction 

 

2.3.1 Frensel and Fraunhofer diffraction 
 

Everyone is used to the idea that sound bends around corners. If sound didn’t 

behave this way, you couldn’t hear a police siren that’s out of sight around a corner 

or the speech of a person whose back is turned to you. What may surprise you (and 

certainly surprised many scientists of the early 19th century) is that light can bend 

around corners as well. When light from a point source falls on a straightedge and 

casts a shadow, the edge of the shadow is never perfectly sharp. Some light appears 

in the area that we expect to be in the shadow, and we find alternating bright and dark 

fringes in the illuminated area. In general, light emerging from apertures doesn’t 
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behave precisely according to the predictions of the straight-line ray model of 

geometric optics. 

Light emerging from arrays of apertures also forms patterns whose character 

depends on the colour of the light and the size and spacing of the apertures. Examples 

of this effect include the colours of iridescent butterflies and the “rainbow” you see 

reflected from the surface of a compact disc. We’ll explore similar effects with x rays 

that are used to study the atomic structure of solids and liquids. Finally, we’ll look at 

the physics of a hologram, a special kind of interference pattern recorded on 

photographic film and reproduced. When properly illuminated, it forms a three-

dimensional image of the original object. 

According to geometric optics, when an opaque object is placed between a 

point light source and a screen, as in Fig. 105, the shadow of the object forms a 

perfectly sharp line. No light at all strikes the screen at points within the shadow, and 

the area outside the shadow is illuminated nearly uniformly. But the wave nature of 

light causes effects that can’t be understood with geometric optics. An important 

class of such effects occurs when light strikes a barrier that has an aperture or an 

edge. The interference patterns formed in such a situation are grouped under the 

heading diffraction. 

 

 
Figure 105 – A point source of light illuminates a straightedge 

 

Figure 106 shows an example of diffraction. The photograph in Fig. 106a was 

made by placing a razor blade halfway between a pinhole, illuminated by 

monochromatic light, and a photographic film. The film recorded the shadow cast by 

the blade. Figure 106b is an enlargement of a region near the shadow of the right 

edge of the blade. The position of the geometric shadow line is indicated by arrows. 

The area outside the geometric shadow is bordered by alternating bright and dark 

bands. There is some light in the shadow region, although this is not very visible in 

the photograph. The first bright band in Fig. 106b, just to the right of the geometric 

shadow, is considerably brighter than in the region of uniform illumination to the 

extreme right. This simple experiment gives us some idea of the richness and 
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complexity of what might seem to be a simple idea, the casting of a shadow by an 

opaque object. 

We don’t often observe diffraction patterns such as Fig. 106 in everyday life 

because most ordinary light sources are neither monochromatic nor point sources. If 

we use a white frosted light bulb instead of a point source to illuminate the razor 

blade in Fig. 106, each wavelength of the light from every point of the bulb forms its 

own diffraction pattern, but the patterns overlap so much that we can’t see any 

individual pattern. 

We can analyze diffraction patterns using Huygens’s principle. This principle 

states that we can consider every point of a wave front as a source of secondary 

wavelets. These spread out in all directions with a speed equal to the speed of 

propagation of the wave. The position of the wave front at any later time is the 

envelope of the secondary wavelets at that time. To find the resultant displacement at 

any point, we combine all the individual displacements produced by these secondary 

waves, using the superposition principle and taking into account their amplitudes and 

relative phases. 

 

 
Figure 106 – An example of diffraction 

 

In Fig. 105, both the point source and the screen are relatively close to the 

obstacle forming the diffraction pattern. This situation is described as near-field 

diffraction or Fresnel diffraction, pronounced “Freh-nell” (after the French scientist 

Augustin Jean Fresnel, 1788–1827). By contrast, we use the term Fraunhofer 

diffraction (after the German physicist Joseph von Fraunhofer, 1787–1826) for 

situations in which the source, obstacle, and screen are far enough apart that we can 

consider all lines from the source to the obstacle to be parallel, and can likewise 

consider all lines from the obstacle to a given point on the screen to be parallel. We 

will restrict the following discussion to Fraunhofer diffraction, which is usually 

simpler to analyze in detail than Fresnel diffraction. 

Diffraction is sometimes described as “the bending of light around an 

obstacle.” But the process that causes diffraction is present in the propagation of 

every wave. When part of the wave is cut off by some obstacle, we observe 

diffraction effects that result from interference of the remaining parts of the wave 

fronts. Optical instruments typically use only a limited portion of a wave; for 
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example, a telescope uses only the part of a wave that is admitted by its objective lens 

or mirror. Thus diffraction plays a role in nearly all optical phenomena. 

Finally, we emphasize that there is no fundamental distinction between 

interference and diffraction. We used the term interference for effects involving 

waves from a small number of sources, usually two. Diffraction usually involves a 

continuous distribution of Huygens’s wavelets across the area of an aperture, or a 

very large number of sources or apertures. But both interference and diffraction are 

consequences of superposition and Huygens’s principle. 

 

2.3.2 Diffraction from a single slit 
 

In this section we’ll discuss the diffraction pattern formed by plane-wave 

(parallelray) monochromatic light when it emerges from a long, narrow slit, as shown 

in Fig. 107. We call the narrow dimension the width, even though in this figure it is a 

vertical dimension. 

According to geometric optics, the transmitted beam should have the same 

cross section as the slit, as in Fig. 107a. What is actually observed is the pattern 

shown in Fig. 107b. The beam spreads out vertically after passing through the slit. 

The diffraction pattern consists of a central bright band, which may be much broader 

than the width of the slit, bordered by alternating dark and bright bands with rapidly 

decreasing intensity. About 85% of the power in the transmitted beam is in the central 

bright band, whose width is inversely proportional to the width of the slit. In general, 

the smaller the width of the slit, the broader the entire diffraction pattern. (The 

horizontal spreading of the beam in Fig. 107b is negligible because the horizontal 

dimension of the slit is relatively large.) You can observe a similar diffraction pattern 

by looking at a point source, such as a distant street light, through a narrow slit 

formed between your two thumbs held in front of your eye; the retina of your eye 

corresponds to the screen. 

 

 
Figure 107 - (a) The “shadow” of a horizontal slit as incorrectly predicted by 

geometric optics. (b) A horizontal slit actually produces a diffraction pattern. The slit 

width has been greatly exaggerated 

 

Single-Slit Diffraction: Locating the Dark Fringes. [Figure 108 shows a side view 

of the same setup; the long sides of the slit are perpendicular to the figure, and plane 

waves are incident on the slit from the left. According to Huygens’s principle, each 
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element of area of the slit opening can be considered as a source of secondary waves. 

In particular, imagine dividing the slit into several narrow strips of equal width, 

parallel to the long edges and perpendicular to the page. Figure 108a shows two such 

strips. Cylindrical secondary wavelets, shown in cross section, spread out from each 

strip. 

 

 
Figure 108 - Diffraction by a single rectangular slit. The long sides of the slit are 

perpendicular to the figure 

 

In Fig. 108b a screen is placed to the right of the slit. We can calculate the 

resultant intensity at a point P on the screen by adding the contributions from the 

individual wavelets, taking proper account of their various phases and amplitudes. 

It’s easiest to do this calculation if we assume that the screen is far enough away that 

all the rays from various parts of the slit to a particular point P on the screen are 

parallel, as in Fig. 108c. An equivalent situation is Fig. 108d, in which the rays to the 

lens are parallel and the lens forms a reduced image of the same pattern that would be 

formed on an infinitely distant screen without the lens. We might expect that the 

various light paths through the lens would introduce additional phase shifts, but in 

fact it can be shown that all the paths have equal phase shifts, so this is not a 

problem. 

The situation of Fig. 108b is Fresnel diffraction; those in Figs. 108c and 108d, 

where the outgoing rays are considered parallel, are Fraunhofer diffraction. We can 

derive quite simply the most important characteristics of the Fraunhofer diffraction 

pattern from a single slit. First consider two narrow strips, one just below the top 

edge of the drawing of the slit and one at its center, shown in end view in Fig. 109. 

The difference in path length to point P is          , where a is the slit width and   

is the angle between the perpendicular to the slit and a line from the center of the slit 

to P. Suppose this path difference happens to be equal to    ; then light from these 

two strips arrives at point P with a halfcycle phase difference, and cancellation 

occurs. 

Similarly, light from two strips immediately below the two in the figure also 

arrives at P a half-cycle out of phase. In fact, the light from every strip in the top half 

of the slit cancels out the light from a corresponding strip in the bottom half. Hence 

the combined light from the entire slit completely cancels at P, giving a dark fringe in 

the interference pattern. A dark fringe occurs whenever 
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or 

      
 

 
 

 

 

(193) 

 

 

The plus-or-minus sign in Eq. (193) says that there are symmetric dark fringes above 

and below point O in Fig. 109a. The upper fringe      occurs at a point P where 

light from the bottom half of the slit travels     farther to P than does light from the 

top half; the lower fringe       occurs where light from the top half travels     

farther than light from the bottom half. 

 

 
Figure 109 - Side view of a horizontal slit. When the distance to the screen is much 

greater than the slit width the rays from a distance apart may be considered parallel 

 

We may also divide the screen into quarters, sixths, and so on, and use the 

above argument to show that a dark fringe occurs whenever        
 

 
   

 

 
 , and 

so on. Thus the condition for a dark fringe is 

 

     
  

 
                     

(194) 

 

For example, if the slit width is equal to ten wavelengths         dark fringes 

occur at    
 

  
  

 

  
  

 

  
    . Between the dark fringes are bright fringes. We 

also note that        corresponds to a bright band; in this case, light from the 

entire slit arrives at P in phase. Thus it would be wrong to put     in Eq. (194). 

The central bright fringe is wider than the other bright fringes, as Fig. 107b shows. In 

the small-angle approximation that we will use below, it is exactly twice as wide. 
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With light, the wavelength is of the order of               . This is 

often much smaller than the slit width a typical slit width is             . 

Therefore the values of   in Eq. (194) are often so small that the approximation 

       (where   is in radians) is a very good one. In that case we can rewrite this 

equation as 

 

  
  

 
                     

(195) 

 

where   is in radians. Also, if the distance from slit to screen is x, as in Fig. 109a, 

and the vertical distance of the mth dark band from the center of the pattern is ym, 

then          . For small   we may also approximate      by   (in radians), 

and we then find 

 

    
  

 
 

(196) 

 

Figure 110 is a photograph of a single-slit diffraction pattern with the   
        and    minima labeled. 

 

 
Figure 110 - Photograph of the Fraunhofer diffraction pattern of a single horizontal 

slit 

 

Discussion questions 

1. Why can we readily observe diffraction effects for sound waves and water 

waves, but not for light? Is this because light travels so much faster than these 

other waves? Explain. 

2. What is the difference between Fresnel and Fraunhofer diffraction? Are they 

different physical processes? Explain. 

3. You use a lens of diameter D and light of wavelength λ and frequency f to form 

an image of two closely spaced and distant objects. Which of the following 

will increase the resolving power? (a) Use a lens with a smaller diameter; (b) 
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use light of higher frequency; (c) use light of longer wavelength. In each case 

justify your answer. 

4. Light of wavelength λ and frequency passes f through a single slit of width . 

The diffraction pattern is observed on a screen a distance from the slit. Which 

of the following will decrease the width of the central maximum? (a) Decrease 

the slit width; (b) decrease the frequency of the light; (c) decrease the 

wavelength of the light; (d) decrease the distance of the screen from the slit. In 

each case justify your answer. 

5. In a diffraction experiment with waves of wavelength λ there will be no 

intensity minima (that is, no dark fringes) if the slit width is small enough. 

What is the maximum slit width for which this occurs? Explain your answer. 

6. The predominant sound waves used in human speech have wavelengths in the 

range from 1.0 to 3.0 meters. Using the ideas of diffraction, explain how it is 

possible to hear a person’s voice even when he is facing away from you. 

7. In single-slit diffraction, what is when θ=0. In view of your answer, why is the 

single-slit intensity not equal to zero at the center? 

8. A rainbow ordinarily shows a range of colors. But if the water droplets that 

form the rainbow are small enough, the rainbow will appear white. Explain 

why, using diffraction ideas. How small do you think the raindrops would have 

to be for this to occur? 

9. Some loudspeaker horns for outdoor concerts (at which the entire audience is 

seated on the ground) are wider vertically than horizontally. Use diffraction 

ideas to explain why this is more efficient at spreading the sound uniformly 

over the audience than either a square speaker horn or a horn that is wider 

horizontally than vertically. Would this still be the case if the audience were 

seated at different elevations, as in an amphitheater? Why or why not? 

10. Information is stored on an audio compact disc, CD-ROM, or DVD disc in a 

series of pits on the disc. These pits are scanned by a laser beam. An important 

limitation on the amount of information that can be stored on such a disc is the 

width of the laserbeam. Explain why this should be, and explain how using a 

shorter-wavelength laser allows more information to be stored on a disc of the 

same size. 

11. With which color of light can the Hubble Space Telescope see finer detail in a 

distant astronomical object: red, blue, or ultraviolet? Explain your answer. 

12. Could x-ray diffraction effects with crystals be observed by using visible light 

instead of x rays? Why or why not? 

13. Why is a diffraction grating better than a two-slit setup for measuring 

wavelengths of light? 

14. One sometimes sees rows of evenly spaced radio antenna towers. A student 

remarked that these act like diffraction gratings. What did she mean? Why 

would one want them to act like a diffraction grating? 

15. If a hologram is made using 600-nm light and then viewed with 500-nm light, 

how will the images look compared to those observed when viewed with 600-

nm light? Explain.  
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16. A hologram is made using 600-nm light and then viewed by using white light 

from an incandescent bulb. What will be seen? Explain. 

17. Ordinary photographic film reverses black and white, in the sense that the most 

brightly illuminated areas become blackest upon development (hence the term 

negative). Suppose a hologram negative is viewed directly, without making a 

positive transparency. How will the resulting images differ from those obtained 

with the positive? Explain. 
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Topic 3 Modern physics 

 

 

3.1 Relativity 

 

3.1.1 Invariance of physical laws 
 

When the year 1905 began, Albert Einstein was an unknown 25-year old clerk 

in the Swiss patent office. By the end of that amazing year he had published three 

papers of extraordinary importance. One was an analysis of Brownian motion; a 

second (for which he was awarded the Nobel Prize) was on the photoelectric effect. 

In the third, Einstein introduced his special theory of relativity, proposing drastic 

revisions in the Newtonian concepts of space and time. 

The special theory of relativity has made wide-ranging changes in our 

understanding of nature, but Einstein based it on just two simple postulates. One 

states that the laws of physics are the same in all inertial frames of reference; the 

other states that the speed of light in vacuum is the same in all inertial frames. These 

innocent-sounding propositions have far-reaching implications. Here are three:(1) 

Events that are simultaneous for one observer may not be simultaneous for another. 

(2) When two observers moving relative to each other measure a time interval or a 

length, they may not get the same results. (3) For the conservation principles for 

momentum and energy to be valid in all inertial systems, Newton’s second law and 

the equations for momentum and kinetic energy have to be revised. 

Relativity has important consequences in all areas of physics, including 

electromagnetism, atomic and nuclear physics, and high-energy physics. Although 

many of the results derived in this chapter may run counter to your intuition, the 

theory is in solid agreement with experimental observations. 

Let’s take a look at the two postulates that make up the special theory of 

relativity. Both postulates describe what is seen by an observer in an inertial frame of 

reference. The theory is “special” in the sense that it applies to observers in such 

special reference frames. 

Einstein’s first postulate, called the principle of relativity, states: The laws of 

physics are the same in every inertial frame of reference. If the laws differed, that 

difference could distinguish one inertial frame from the others or make one frame 

somehow more “correct” than another. Here are two examples. Suppose you watch 

two children playing catch with a ball while the three of you are aboard a train 

moving with constant velocity. Your observations of the motion of the ball, no matter 

how carefully done, can’t tell you how fast (or whether) the train is moving. This is 

because Newton’s laws of motion are the same in every inertial frame. Another 

example is the electromotive force (emf) induced in a coil of wire by a nearby 

moving permanent magnet. In the frame of reference in which the coil is stationary 

(Fig. 111a), the moving magnet causes a change of magnetic flux through the coil, 

and this induces an emf. In a different frame of reference in which the magnet is 

stationary (Fig. 111b), the motion of the coil through a magnetic field induces the 
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emf. According to the principle of relativity, both of these frames of reference are 

equally valid. Hence the same emf must be induced in both situations shown in Fig. 

111. As we saw, this is indeed the case, so Faraday’s law is consistent with the 

principle of relativity. Indeed, all of the laws of electromagnetism are the same in 

every inertial frame of reference. 

 

 
Figure 111 - The same emf is induced in the coil whether (a) the magnet moves 

relative to the coil or (b) the coil moves relative to the magnet 

 

Equally significant is the prediction of the speed of electromagnetic radiation, 

derived from Maxwell’s equations. According to this analysis, light and all other 

electromagnetic waves travel in vacuum with a constant speed, now defined to equal 

exactly              . (We often use the approximate value            , 
which is within one part in 1000 of the exact value.) As we will see, the speed of light 

in vacuum plays a central role in the theory of relativity. 

During the 19th century, most physicists believed that light travelled through a 

hypothetical medium called the ether, just as sound waves travel through air. If so, 

the speed of light measured by observers would depend on their motion relative to the 

ether and would therefore be different in different directions. The Michelson-Morley 

experiment, was an effort to detect motion of the earth relative to the ether. Einstein’s 

conceptual leap was to recognize that if Maxwell’s equations are valid in all inertial 

frames, then the speed of light in vacuum should also be the same in all frames and in 

all directions. In fact, Michelson and Morley detected no ether motion across the 

earth, and the ether concept has been discarded. Although Einstein may not have 

known about this negative result, it supported his bold hypothesis of the constancy of 

the speed of light in vacuum. 

Einstein’s second postulate states: The speed of light in vacuum is the 

same in all inertial frames of reference and is independent of the motion of the 

source. 
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Let’s think about what this means. Suppose two observers measure the speed 

of light in vacuum. One is at rest with respect to the light source, and the other is 

moving away from it. Both are in inertial frames of reference. According to the 

principle of relativity, the two observers must obtain the same result, despite the fact 

that one is moving with respect to the other. 

If this seems too easy, consider the following situation. A spacecraft moving 

past the earth at fires a missile straight ahead with a speed of 2000 m/s (relative to the 

spacecraft) (Fig. 112). What is the missile’s speed relative to the earth? Simple, you 

say; this is an elementary problem in relative velocity. The correct answer, according 

to Newtonian mechanics, is 3000 m/s. But now suppose the spacecraft turns on a 

searchlight, pointing in the same direction in which the missile was fired. An 

observer on the spacecraft measures the speed of light emitted by the searchlight and 

obtains the value According to Einstein’s second postulate, the motion of the light 

after it has left the source cannot depend on the motion of the source. So the observer 

on earth who measures the speed of this same light must also obtain the value  , not 

          . This result contradicts our elementary notion of relative velocities, 

and it may not appear to agree with common sense. But “common sense” is intuition 

based on everyday experience, and this does not usually include measurements of the 

speed of light. 

 

 
Figure 112 - (a) Newtonian mechanics makes correct predictions about relatively 

slow-moving objects; (b) it makes incorrect predictions about the behavior of light 

 

Einstein’s second postulate immediately implies the following result: 

It is impossible for an inertial observer to travel at c, the speed of light in 

vacuum. 

We can prove this by showing that travel at implies a logical contradiction. 

Suppose that the spacecraft S’ in Fig. 112b is moving at the speed of light relative to 

an observer on the earth, so that        . If the spacecraft turns on a headlight, the 

second postulate now asserts that the earth observer S measures the headlight beam to 

be also moving at  .Thus this observer measures that the headlight beam and the 

spacecraft move together and are always at the same point in space. But Einstein’s 

second postulate also asserts that the headlight beam moves at a speed relative to the 

spacecraft, so they cannot be at the same point in space. This contradictory result can 
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be avoided only if it is impossible for an inertial observer, such as a passenger on the 

spacecraft, to move at  . As we go through our discussion of relativity, you may find 

yourself asking the question Einstein asked himself as a 16-year-old student, “What 

would I see if I were travelling at the speed of light?” Einstein realized only years 

later that his question’s basic flaw was that he could not travel at 

The Galilean Coordinate Transformation. Let’s restate this argument 

symbolically, using two inertial frames of reference, labelled   for the observer on 

earth and    for the moving spacecraft, as shown in Fig. 113. To keep things as 

simple as possible, we have omitted the z-axis. The x-axis of the two frames lie along 

the same line, but the origin    of frame    moves relative to the origin   of frame   

with constant velocity   along the common x-x’-axis. We on earth set our clocks so 

that the two origins coincide at time t = 0, so their separation at a later time t is ut. 

 

 
Figure 113 – The position of particle   can be described by the coordinates   and   

in frame of references   or by    and    in frame    
 

 Now think about how we describe the motion of a particle P. This might be an 

exploratory vehicle launched from the spacecraft or a pulse of light from a laser. We 

can describe the position of this particle by using the earth coordinates         in   

or the spacecraft coordinates            in   . Figure 113 shows that these are simply 

related by 

 

                        (197) 
 

These equations, based on the familiar Newtonian notions of space and time, are 

called the Galilean coordinate transformation. 

If particle   moves in the x-direction, its instantaneous velocity    as measured 

by an observer stationary in   is         . Its velocity     as measured by an 
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observer stationary in    is   
        . We can derive a relationship between    

and     by taking the derivative with respect to of the first of Eqs. (197): 

 
  

  
 
   

  
   

(198) 

 

Now       is the velocity    measured in  , and        is the velocity     measured 

in   , so we get the Galilean velocity transformation for one-dimensional motion: 

 

     
    (199) 

 

Now here’s the fundamental problem. Applied to the speed of light in vacuum, 

Eq. (194) says that       . Einstein’s second postulate, supported subsequently 

by a wealth of experimental evidence, says that     . This is a genuine 

inconsistency, not an illusion, and it demands resolution. If we accept this postulate, 

we are forced to conclude that Eqs. (197) and (199) cannot be precisely correct, 

despite our convincing derivation. These equations have to be modified to bring them 

into harmony with this principle. 

The resolution involves some very fundamental modifications in our kinematic 

concepts. The first idea to be changed is the seemingly obvious assumption that the 

observers in frames   and    use the same time scale, formally stated as     . Alas, 

we are about to show that this everyday assumption cannot be correct; the two 

observers must have different time scales. We must define the velocity    in frame    
as           , not as       ; the two quantities are not the same. The difficulty 

lies in the concept of simultaneity, which is our next topic. A careful analysis of 

simultaneity will help us develop the appropriate modifications of our notions about 

space and time. 

 

3.1.2 Relativity of time intervals 
 

We can derive a quantitative relationship between time intervals in different 

coordinate systems. To do this, let’s consider another thought experiment. As before, 

a frame of reference    moves along the common     -axis with constant speed   

relative to a frame  .   must be less than the speed of light  . Mavis, who is riding 

along with frame   , measures the time interval between two events that occur at the 

same point in space. Event 1 is when a flash of light from a light source leaves   . 
Event 2 is when the flash returns to   , having been reflected from a mirror a distance 

  away, as shown in Fig. 114a. We label the time interval     using the subscript 

zero as a reminder that the apparatus is at rest, with zero velocity, in frame   . The 

flash of light moves a total distance 2d, so the time interval is 

 

    
  

 
 

(200) 
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Figure 114 - (a) Mavis, in frame of reference   , observes a light pulse emitted from a 

source at    and reflected back along the same line. (b) How Stanley (in frame of 

reference  ) and Mavis observe the same light pulse. The positions of    at the times 

of departure and return of the pulse are shown 

 

The round-trip time measured by Stanley in frame is a different interval   ; in his 

frame of reference the two events occur at different points in space. During the time 

  , the source moves relative to   a distance     (Fig. 114b). In    the round-trip 

distance is    perpendicular to the relative velocity, but the round-trip distance in   is 

the longer distance   , where 

 

       
   

 
 
 

 

(201) 

 

In writing this expression, we have assumed that both observers measure the same 

distance  . We will justify this assumption in the next section. The speed of light is 

the same for both observers, so the round-trip time measured in   is 

 

   
  

 
 
 

 
     

   

 
 
 

 

(202) 

 

We would like to have a relationship between    and  that is independent of   To get 

this, we solve Eq. (200) for   and substitute the result into Eq. (202), obtaining 

 

   
 

 
  
    
 
 
 

  
   

 
 
 

 

(203) 

 

Now we square this and solve for    the result is 

 

   
   

        
 

(204) 
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Since the quantity          is less than 1,    is greater than    : Thus Stanley 

measures a longer round-trip time for the light pulse than does Mavis. 

Time Dilation. We may generalize this important result. In a particular frame 

of reference, suppose that two events occur at the same point in space. The time 

interval between these events, as measured by an observer at rest in this same frame 

(which we call the rest frame of this observer), is    . Then an observer in a second 

frame moving with constant speed relative to the rest frame will measure the time 

interval to be   , where 

 

   
   

        
 

(205) 

 

We recall that no inertial observer can travel at     and we note that          is 

imaginary for    . Thus Eq. (205) gives sensible results only when    . The 

denominator of Eq. (205) is always smaller than 1, so    is always larger than    . 

Thus we call this effect time dilation. 

Think of an old-fashioned pendulum clock that has one second between ticks, 

as measured by Mavis in the clock’s rest frame; this is    . If the clock’s rest frame is 

moving relative to Stanley, he measures a time between ticks    that is longer than 

one second. In brief, observers measure any clock to run slow if it moves relative to 

them (Fig. 115). Note that this conclusion is a direct result of the fact that the speed of 

light in vacuum is the same in both frames of reference. 

 

 
Figure 115 - This image shows an exploding star, called a supernova, within a distant 

galaxy. The brightness of a typical supernova decays at a certain rate. But supernovae 

that are moving away from us at a substantial fraction of the speed of light decay 

more slowly, in accordance with Eq. (205). The decaying supernova is a moving 

“clock” that runs slow 
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The quantity            in Eq. (205) appears so often in relativity that it is 

given its own symbol   (the Greek letter gamma): 

 

  
 

        
 

(206) 

 

In terms of this symbol, we can express the time dilation formula, Eq. (205), as 

 

        (207) 
 

As a further simplification,     is sometimes given the symbol β (the Greek letter 

beta); then          . 

Figure 116 shows a graph of   as a function of the relative speed   of two 

frames of reference. When   is very small compared to         is much smaller than 

1 and   is very nearly equal to 1. In that limit, Eqs. (205) and (207) approach the 

Newtonian relationship       , corresponding to the same time interval in all 

frames of reference. 

 

 

Figure 116 - The quantity           as a function of the relative speed of two 

frames of reference 

 

If the relative speed   is great enough that   is appreciably greater than 1, the 

speed is said to be relativistic; if the difference between   and 1 is negligibly small, 

the speed   is called nonrelativistic. Thus        
 

 
      (for which   

    ) is a relativistic speed, but        
 

 
         (for which   

          ) is a nonrelativistic speed. 
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Proper Time. There is only one frame of reference in which a clock is at rest, 

and there are infinitely many in which it is moving. Therefore the time interval 

measured between two events (such as two ticks of the clock) that occur at the same 

point in a particular frame is a more fundamental quantity than the interval between 

events at different points. We use the term proper time to describe the time interval 

between two events that occur at the same point. 

In thought experiments, it’s often helpful to imagine many observers with 

synchronized clocks at rest at various points in a particular frame of reference. We 

can picture a frame of reference as a coordinate grid with lots of synchronized clocks 

distributed around it, as suggested by Fig. 117. Only when a clock is moving relative 

to a given frame of reference do we have to watch for ambiguities of synchronization 

or simultaneity. 

 

 
Figure 117 - A frame of reference pictured as a coordinate system with a grid of 

synchronized clocks 

 

Throughout this chapter we will frequently use phrases like “Stanley observes 

that Mavis passes the point               at time 2 s.” This means that 

Stanley is using a grid of clocks in his frame of reference, like the grid shown in Fig. 

117, to record the time of an event. We could restate the phrase as “When Mavis 

passes the point at              , the clock at that location in Stanley’s 

frame of reference reads 2 s.” We will avoid using phrases like “Stanley sees that 

Mavis is a certain point at a certain time,” because there is a time delay for light to 

travel to Stanley’s eye from the position of an event. 

 

3.1.3 Relativity of length 
 

Not only does the time interval between two events depend on the observer’s 

frame of reference, but the distance between two points may also depend on the 

observer’s frame of reference. The concept of simultaneity is involved. Suppose you 

want to measure the length of a moving car. One way is to have two assistants make 
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marks on the pavement at the positions of the front and rear bumpers. Then you 

measure the distance between the marks. But your assistants have to make their 

marks at the same time. If one marks the position of the front bumper at one time and 

the other marks the position of the rear bumper half a second later, you won’t get the 

car’s true length. Since we’ve learned that simultaneity isn’t an absolute concept, we 

have to proceed with caution. 

Lengths Parallel to the Relative Motion. To develop a relationship between 

lengths that are measured parallel to the direction of motion in various coordinate 

systems, we consider another thought experiment. We attach a light source to one end 

of a ruler and a mirror to the other end. The ruler is at rest in reference frame   , and 

its length in this frame is    (Fig. 118a). Then the time     required for a light pulse 

to make the round trip from source to mirror and back is 

 

    
   
 

 
(208) 

 

This is a proper time interval because departure and return occur at the same point in 

  . 
 

 
Figure 118 - (a) A ruler is at rest in Mavis’s frame   . A light pulse is emitted from a 

source at one end of the ruler, reflected by a mirror at the other end, and returned to 

the source position. (b) Motion of the light pulse as measured in Stanley’s frame S 

 

In reference frame   the ruler is moving to the right with speed   during this 

travel of the light pulse (Fig. 118b). The length of the ruler in   is  , and the time of 

travel from source to mirror, as measured in  , is    . During this interval the ruler, 

with source and mirror attached, moves a distance     . The total length of path   

from source to mirror is not but rather 

 

         (209) 
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The light pulse travels with speed so it is also true that 

 

       (210) 
 

Combining Eqs. (209) and (210) to eliminate   we find 

 

            
or 

    
 

   
 

 

(211) 

 

(Dividing the distance   by     does not mean that light travels with speed    , 

but rather that the distance the pulse travels in   is greater than  ). 
In the same way we can show that the time     for the return trip from mirror 

to source is 

 

    
 

   
 

(212) 

 

The total time            for the round trip, as measured in  , is 

 

   
 

   
 

 

   
 

  

          
 

(213) 

 

We also know that    and     are related by Eq. (205) because     is a proper time 

in   . Thus Eq. (209) for the round-trip time in the rest frame    of the ruler becomes 

 

     
  

  
 
  
 

 

(214) 

 

Finally, combining Eqs. (213) and (214) to eliminate    and simplifying, we obtain 

 

       
  

  
 
  
 

 

(215) 

 

We have used the quantity        
  

  
 defined in Eq. (206). Thus the length 

measured in  , in which the ruler is moving, is shorter than the length    measured in 

its frame   . 
A length measured in the frame in which the body is at rest (the rest frame of 

the body) is called a proper length; thus    is a proper length in   , and the length 
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measured in any other frame moving relative to    is less than   . This effect is called 

length contraction. 

When   is very small in comparison to     approaches 1. Thus in the limit of 

small speeds we approach the Newtonian relationship     . This and the 

corresponding result for time dilation show that Eqs. (197), the Galilean coordinate 

transformation, are usually sufficiently accurate for relative speeds much smaller than 

 . If   is a reasonable fraction of  , however, the quantity    
  

  
 can be appreciably 

less than 1. Then can be substantially smaller than   , and the effects of length 

contraction can be substantial (Fig. 119). 

 

 
Figure 119 - The speed at which electrons traverse the 3-km beam line of the LAC 

National Accelerator Laboratory is slower than   by less than 1 cm/s. As measured in 

the reference frame of such an electron, the beam line (which extends from the top to 

the bottom of this photograph) is only about 15 cm long! 

 

3.1.4. Relativistic work and energy 
 

When we developed the relationship between work and kinetic energy we used 

Newton’s laws of motion. When we generalize these laws according to the principle 

of relativity, we need a corresponding generalization of the equation for kinetic 

energy. 

Relativistic Kinetic Energy. We use the work–energy theorem, beginning 

with the definition of work. When the net force and displacement are in the same 
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direction, the work done by that force is       . We substitute the expression for 

relativistic force   
 

            
 , the applicable relativistic version of Newton’s 

second law. In moving a particle of rest mass from point    to point   , 

 

      

  

  

  
    

            

  

  

 

(216) 

 

To derive the generalized expression for kinetic energy   as a function of speed  , 

we would like to convert this to an integral on  . To do this, first remember that the 

kinetic energy of a particle equals the net work done on it in moving it from rest to 

the speed  :    . Thus we let the speeds be zero at point    and   at point   . So 

as not to confuse the variable of integration with the final speed, we change   to    in 

Eq. 216. That is,    is the varying x-component of the velocity of the particle as the 

net force accelerates it from rest to a speed  . We also realize that    and     are the 

infinitesimal changes in   and   , respectively, in the time interval   . Because 

         and         , we can rewrite     in Eq. (216) as 

 

    
   
  

     
   
  

 
  

  
        

(217) 

 

Making these substitutions gives us 

 

     
     

            

 

 

 
(218) 

 

We can evaluate this integral by a simple change of variable; the final result is 

 

  
   

        
              

(219) 

 

As   approaches  , the kinetic energy approaches infinity. If Eq. (219) is 

correct, it must also approach the Newtonian expression   
 

 
    when   is much 

smaller than   (Fig. 120). 
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Figure 120 - Graph of the kinetic energy of a particle of rest mass   as a function of 

speed  . Also shown is the Newtonian prediction, which gives correct results only at 

speeds much less than c. 

 

When   is much smaller than  , all the terms in the series in binominal theorem 

except the first are negligibly small, and we obtain the Newtonian expression 
 

 
   . 

Rest Energy. Equation (219) for the kinetic energy of a moving particle 

includes a term              that depends on the motion and a second energy 

term     that is independent of the motion. It seems that the kinetic energy of a 

particle is the difference between some total energy E and an energy     that it has 

even when it is at rest. Thus we can rewrite Eq. (219) as 

 

        
   

   
  

  

      
(220) 

 

For a particle at rest      , we see that      . The energy     associated with 

rest mass   rather than motion is called the rest energy of the particle. 

There is in fact direct experimental evidence that rest energy really does exist. 

The simplest example is the decay of a neutral pion. This is an unstable subatomic 

particle of rest mass   ; when it decays, it disappears and electromagnetic radiation 

appears. If a neutral pion has no kinetic energy before its decay, the total energy of 

the radiation after its decay is found to equal exactly    
 . In many other 

fundamental particle transformations the sum of the rest masses of the particles 

changes. In every case there is a corresponding energy change, consistent with the 

assumption of a rest energy     associated with a rest mass  . Historically, the 

principles of conservation of mass and of energy developed quite independently. The 
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theory of relativity shows that they are actually two special cases of a single broader 

conservation principle, the principle of conservation of mass and energy. In some 

physical phenomena, neither the sum of the rest masses of the particles nor the total 

energy other than rest energy is separately conserved, but there is a more general 

conservation principle: In an isolated system, when the sum of the rest masses 

changes, there is always a change in      times the total energy other than the rest 

energy. This change is equal in magnitude but opposite in sign to the change in the 

sum of the rest masses. 

This more general mass-energy conservation law is the fundamental principle 

involved in the generation of power through nuclear reactions. When a uranium 

nucleus undergoes fission in a nuclear reactor, the sum of the rest masses of the 

resulting fragments is less than the rest mass of the parent nucleus. An amount of 

energy is released that equals the mass decrease multiplied by   . Most of this energy 

can be used to produce steam to operate turbines for electric power generators. 

We can also relate the total energy   of a particle (kinetic energy plus rest 

energy) directly to its momentum by combining Eq.    
    

        
 for relativistic 

momentum and Eq. (220) for total energy to eliminate the particle’s velocity. The 

simplest procedure is to rewrite these equations in the following forms: 

 

 
 

   
 
 

 
 

       
 

and 

 
 

  
 
 

 
     

       
 

 

(221) 

 
 
 

(222) 

 

Subtracting the second of these from the first and rearranging, we find 

 

                (223) 
 

Again we see that for a particle at rest          . 

Equation (223) also suggests that a particle may have energy and momentum 

even when it has no rest mass. In such a case,     and 

 

     (224) 
 

In fact, zero rest mass particles do exist. Such particles always travel at the speed of 

light in vacuum. One example is the photon, the quantum of electromagnetic 

radiation. Photons are emitted and absorbed during changes of state of an atomic or 

nuclear system when the energy and momentum of the system change. 
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Discussion questions 

1. You are standing on a train platform watching a high-speed train pass by. A 

light inside one of the train cars is turned on and then a little later it is turned 

off. (a) Who can measure the proper time interval for the duration of the light: 

you or a passenger on the train? (b) Who can measure the proper length of the 

train car: you or a passenger on the train? (c) Who can measure the proper 

length of a sign attached to a post on the train platform: you or a passenger on 

the train? In each case explain your answer. 

2. If simultaneity is not an absolute concept, does that mean that we must discard 

the concept of causality? If event A is to cause event B, must occur first. Is it 

possible that in some frames A appears to be the cause of B and in others 

appears to be the cause of A? Explain. 

3. What do you think would be different in everyday life if the speed of light 

were 10 m/s instead of 3*10
8
 m/s? 

4. The average life span in the United States is about 70 years. Does this mean 

that it is impossible for an average person to travel a distance greater than 70 

light-years away from the earth? (A light-year is the distance light travels in a 

year.) Explain. 

5. You are holding an elliptical serving platter. How would you need to travel for 

the serving platter to appear round to another observer? 

6. Two events occur at the same space point in a particular inertial frame of 

reference and are simultaneous in that frame. Is it possible that they may not be 

simultaneous in a different inertial frame? Explain. 

7. A high-speed train passes a train platform. Larry is a passenger on the train, 

Adam is standing on the train platform, and David is riding a bicycle toward 

the platform in the same direction as the train is traveling. Compare the length 

of a train car as measured by Larry, Adam, and David. 

8. The theory of relativity sets an upper limit on the speed that a particle can 

have. Are there also limits on the energy and momentum of a particle? Explain. 

9. A student asserts that a material particle must always have a speed slower than 

that of light, and a massless particle must always move at exactly the speed of 

light. Is she correct? If so, how do massless particles such as photons and 

neutrinos acquire this speed? Can’t they start from rest and accelerate? 

Explain. 

10. The speed of light relative to still water is If the water is 2,25*10
8
 m/s moving 

past us, the speed of light we measure depends on the speed of the water. Do 

these facts violate Einstein’s second postulate? Explain. 

11. When a monochromatic light source moves toward an observer, its wavelength 

appears to be shorter than the value measured when the source is at rest. Does 

this contradict the hypothesis that the speed of light is the same for all 

observers? Explain. 

12. In principle, does a hot gas have more mass than the same gas when it is cold? 

Explain. In practice, would this be a measurable effect? Explain. 
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13. Why do you think the development of Newtonian mechanics preceded the 

more refined relativistic mechanics by so many years? 

 

3.2 Light waves behaving as particles and particles behaving as waves 

 

3.2.1 Photoelectric effect 
 

A phenomenon that gives insight into the nature of light is the photoelectric 

effect, in which a material emits electrons from its surface when illuminated (Fig. 

121). To escape from the surface, an electron must absorb enough energy from the 

incident light to overcome the attraction of positive ions in the material. These 

attractions constitute a potential-energy barrier; the light supplies the “kick” that 

enables the electron to escape. 

 

 
Figure 121 – The photoelectric effect 

 

The photoelectric effect has a number of applications. Digital cameras and 

night-vision scopes use it to convert light energy into an electric signal that is 

reconstructed into an image. On the moon, sunlight striking the surface causes 

surface dust to eject electrons, leaving the dust particles with a positive charge. The 

mutual electric repulsion of these charged dust particles causes them to rise above the 

moon’s surface, a phenomenon that was observed from lunar orbit by the Apollo 

astronauts. 

Early we explored the wave model of light, which Maxwell formulated two 

decades before the photoelectric effect was observed. Is the photoelectric effect 

consistent with this model? Two conducting electrodes are enclosed in an evacuated 

glass tube and connected by a battery, and the cathode is illuminated. Depending on 

the potential difference     between the two electrodes, electrons emitted by the 

illuminated cathode (called photoelectrons) may travel across to the anode, producing 

a photocurrent in the external circuit. (The tube is evacuated to a pressure of 0.01 Pa 

or less to minimize collisions between the electrons and gas molecules.) 
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The illuminated cathode emits photoelectrons with various kinetic energies. If 

the electric field points toward the cathode, all the electrons are accelerated toward 

the anode and contribute to the photocurrent. But by reversing the field and adjusting 

its strength, we can prevent the less energetic electrons from reaching the anode. In 

fact, we can determine the maximum kinetic energy      of the emitted electrons by 

making the potential of the anode relative to the cathode,    , just negative enough so 

that the current stops. This occurs for        , where    is called the stopping 

potential. As an electron moves from the cathode to the anode, the potential 

decreases by    and negative work      is done on the (negatively charged) 

electron. The most energetic electron leaves the cathode with kinetic energy      
 

 
     

  and has zero kinetic energy at the anode. Using the work–energy theorem, 

we have 

 

                    

     
 

 
     

      

(225) 

 

Hence by measuring the stopping potential   , we can determine the maximum 

kinetic energy with which electrons leave the cathode. (We are ignoring any effects 

due to differences in the materials of the cathode and anode.) 

The experimental results proved to be very different from these predictions. 

Here is what was found in the years between 1877 and 1905: 

Experimental Result 1: The photocurrent depends on the light frequency. For a 

given material, monochromatic light with a frequency below a minimum threshold 

frequency produces no photocurrent, regardless of intensity. For most metals the 

threshold frequency is in the ultraviolet (corresponding to wavelengths between 200 

and 300 nm), but for other materials like potassium oxide and cesium oxide it is in 

the visible spectrum ( between 380 and 750 nm). 

Experimental Result 2: There is no measurable time delay between when the light is 

turned on and when the cathode emits photoelectrons (assuming the frequency of the 

light exceeds the threshold frequency). This is true no matter how faint the light is. 

Experimental Result 3: The stopping potential does not depend on intensity, but 

does depend on frequency. Figure 122 shows graphs of photocurrent as a function 

of potential difference     for light of a given frequency and two different intensities. 

The reverse potential difference     needed to reduce the current to zero is the same 

for both intensities. The only effect of increasing the intensity is to increase the 

number of electrons per second and hence the photocurrent i. (The curves level off 

when     is large and positive because at that point all the emitted electrons are being 

collected by the anode.) If the intensity is held constant but the frequency is 

increased, the stopping potential also increases. In other words, the greater the light 

frequency, the higher the energy of the ejected photoelectrons. 
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Figure 122 - Photocurrent i for a constant light frequency ƒ as a function of the 

potential of the anode with respect to the cathode 

 

 

These results directly contradict Maxwell’s description of light as an 

electromagnetic wave. A solution to this dilemma was provided by Albert Einstein in 

1905. His proposal involved nothing less than a new picture of the nature of light. 

Einstein made the radical postulate that a beam of light consists of small 

packages of energy called photons or quanta. This postulate was an extension of an 

idea developed five years earlier by Max Planck to explain the properties of 

blackbody radiation. In Einstein’s picture, the energy E of an individual photon is 

equal to a constant h times the photon frequency  . From the relationship       for 

electromagnetic waves in vacuum, we have 

 

     
  

 
 

(226) 

 

where h is a universal constant called Planck’s constant. The numerical value of 

this constant, to the accuracy known at present, is 

 

                           
 

In Einstein’s picture, an individual photon arriving at the surface in Fig. 121a is 

absorbed by a single electron. This energy transfer is an all-or-nothing process, in 

contrast to the continuous transfer of energy in the wave theory of light; the electron 

gets all of the photon’s energy or none at all. The electron can escape from the 

surface only if the energy it acquires is greater than the work function   . Thus 

photoelectrons will be ejected only if      , or       . Einstein’s postulate 

therefore explains why the photoelectric effect occurs only for frequencies greater 

than a minimum threshold frequency. This postulate is also consistent with the 

observation that greater intensity causes a greater photocurrent(Fig. 122). Greater 

intensity at a particular frequency means a greater 
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number of photons per second absorbed, and thus a greater number of 

electronsemitted per second and a greater photocurrent. 

Einstein’s postulate also explains why there is no delay between illumination 

and the emission of photoelectrons. As soon as photons of sufficient energy strike the 

surface, electrons can absorb them and be ejected. 

Finally, Einstein’s postulate explains why the stopping potential for a given 

surface depends only on the light frequency. Recall that    is the minimum energy 

needed to remove an electron from the surface. Einstein applied conservation of 

energy to find that the maximum kinetic energy      
 

 
     

  for an emitted 

electron is the energy    gained from a photon minus the work function   : 

 

     
 

 
     

        
(227) 

 

Substituting          from Eq. (225), we find 

 

          (228) 
 

Equation (228) shows that the stopping potential increases with increasing 

frequency  . The intensity doesn’t appear in Eq. (228), so    is independent of 

intensity. As a check of Eq. (228), we can measure the stopping potential    for each 

of several values of frequency   for a given cathode material (Fig. 123). A graph of 

   as a function of   turns out to be a straight line, verifying Eq. (228), and from such 

a graph we can determine both the work function    for the material and the value of 

the quantity    . After the electron charge    was measured by Robert Millikan in 

1909, Planck’s constant h could also be determined from these measurements. 

 

 
Figure 123 - Stopping potential as a function of frequency for a particular cathode 

material 

 

Electron energies and work functions are usually expressed in electron volts 

    . To four significant figures, 
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To this accuracy, Planck’s constant is 

 

                                 
 

Table 4 lists the work functions of several elements. These values are 

approximate because they are very sensitive to surface impurities. The greater the 

work function, the higher the minimum frequency needed to emit photoelectrons 

(Fig. 124). 

 

Table 4 – Work functions of several elements 

Element Work function (eV) 

Aluminium 4.3 

Carbon 5 

Copper 4.7 

Gold 5.1 

Nickel 5.1 

Silicon 4.8 

Silver 4.3 

Sodium 2.7 

 

 
Figure 124 - Stopping potential as a function of frequency for two cathode materials 

having different work functions f. 

 

The photon picture explains a number of other phenomena in which light is 

absorbed. One example is a suntan, which is caused when the energy in sunlight 

triggers a chemical reaction in skin cells that leads to increased production of the 

pigment melanin. This reaction can occur only if a specific molecule in the cell 
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absorbs a certain minimum amount of energy. A short-wavelength ultraviolet photon 

has enough energy to trigger the reaction, but a longer-wavelength visible-light 

photon does not. Hence ultraviolet light causes tanning, while visible light cannot. 

 

3.2.2 Compton’s effect 
 

The final aspect of light that we must test against Einstein’s photon model is its 

behavior after the light is produced and before it is eventually absorbed. We can 

do this by considering the scattering of light. 

In the photon model we imagine the scattering process as a 

collision of two particles, the incident photon and an electron that is initially at 

rest (Fig. 125a). The incident photon would give up part of its energy and momentum 

to the electron, which recoils as a result of this impact. The scattered photon that 

remains can fly off at a variety of angles with respect to the incident direction, but it 

has less energy and less momentum than the incident photon (Fig. 125b). The energy 

and momentum of a photon are given by      
  

 
 (Eq. 226) and   

  

 
 

 

 
. 

Therefore, in the photon model, the scattered light has a lower frequency   and longer 

wavelength l than the incident light. 

 

 
Figure 125 – The photon model of scattering by an electron 

 

The definitive experiment that tested these predictions of the wave and photon 

models was carried out in 1922 by the American physicist Arthur H. Compton. In his 

experiment Compton aimed a beam of x rays at a solid target and measured the 

wavelength of the radiation scattered from the target (Fig. 126). He discovered that 
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some of the scattered radiation has smaller frequency (longer wavelength) than the 

incident radiation and that the change in wavelength depends on the angle through 

which the radiation is scattered. This is precisely what the photon model predicts for 

light scattered from electrons in the target, a process that is now called Compton 

scattering. 

Specifically, if the scattered radiation emerges at an angle   with respect to the 

incident direction, as shown in Fig. 126, and if   and    are the wavelengths of the 

incident and scattered radiation, respectively, Compton found that 

 

     
 

  
          

(229) 

 

where m is the electron rest mass. In other words,    is greater than  . The quantity 

     that appears in Eq. (229) has units of length. Its numerical value is 

 

 

  
 

               

                             
               

 

 
Figure 126 – A Compton-effect experiment 

 

Compton showed that Einstein’s photon theory, combined with the principles 

of conservation of energy and conservation of momentum, provides a beautifully 

clear explanation of his experimental results. We outline the derivation below. The 

electron recoil energy may be in the relativistic range, so we have to use the 

relativistic energy–momentum relationships, Eqs. (223) and (224). The incident 

photon has momentum    with magnitude p and energy pc. The scattered photon has 

momentum     with magnitude and energy pc’. The electron is initially at rest, so its 

initial momentum is zero and its initial energy is its rest energy    . The final 

electron momentum      has magnitude   , and the final electron energy is given by 
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 . Then energy conservation gives us the relationship    

          . 

Rearranging, we find 

 

                
              

  (230) 
 

We can eliminate the electron momentum      from Eq. (230) by using momentum 

conservation. From Fig. 127 we see that            , or 

 

            (231) 

 

 
Figure 127 – Vector diagram showing conservation of momentum in Compton 

scattering 

 

By taking the scalar product of each side of Eq. (231) with itself, we find 

 

  
                  (232) 

 

We now substitute this expression for   
  into Eq. (230) and multiply out the left side. 

We divide out a common factor   ; several terms cancel, and when the resulting 

equation is divided through by       the result is 

 
  

  
 
  

 
        (233) 

 

Finally, we substitute         and      , then multiply by      to obtain Eq. 

(229). 

When the wavelengths of x rays scattered at a certain angle are measured, the 

curve of intensity per unit wavelength as a function of wavelength has two peaks 
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(Fig. 128). The longer-wavelength peak represents Compton scattering. The shorter-

wavelength peak, labeled is at the wavelength of the incident x-rays and corresponds 

to x-ray scattering from tightly bound electrons. In such scattering processes the 

entire atom must recoil, so the m in Eq. (229) is the mass of the entire atom rather 

than of a single electron. The resulting wavelength shifts are negligible. 

 

 
Figure 128- Intensity as a function of wavelength for photons scattered at an angle of 

135° in a Compton-scattering experiment 

 

Discussion questions 

1. In what ways do photons resemble other particles such as electrons? In what 

ways do they differ? Do photons have mass? Do they have electric charge? 

Can they be accelerated? What mechanical properties do they have? 

2. There is a certain probability that a single electron may simultaneously absorb 

two identical photons from a high-intensity laser. 

3. According to the photon model, light carries its energy in packets called quanta 

or photons. Why then don’t we see a series of flashes when we look at things? 

4. Would you expect effects due to the photon nature of light to be generally 

more important at the low-frequency end of the electromagnetic spectrum 

(radio waves) or at the high-frequency end (x rays and gamma rays)? Why? 

5. During the photoelectric effect, light knocks electrons out of metals. So why 

don’t the metals in your home lose their electrons when you turn on the lights? 

6. Most black-and-white photographic film (with the exception of some special-

purpose films) is less sensitive to red light than blue light and has almost no 

sensitivity to infrared. How can these properties be understood on the basis of 

photons? 
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7. Human skin is relatively insensitive to visible light, but ultraviolet radiation 

can cause severe burns. Does this have anything to do with photon energies? 

Explain. 

8. In a photoelectric-effect experiment, the photocurrent i for large positive values 

of VAC has the same value no matter what thelight frequency ƒ (provided that ƒ 

is higher than the threshold frequency f0) Explain why. 

9. In an experiment involving the photoelectric effect, if the intensity of the 

incident light (having frequency higher than the threshold frequency) is 

reduced by a factor of 10 without changing anything else, which (if any) of the 

following statements about this process will be true? (a) The number of 

photoelectrons will most likely be reduced by a factor of 10. (b) The maximum 

kinetic energy of the ejected photoelectrons will most likely be reduced by a 

factor of 10. (c) The maximum speed of the ejected photoelectrons will most 

likely be reduced by a factor of 10. (d) The maximum speed of the ejected 

photoelectrons will most likely be reduced by a factor of     (e) The time for 

the first photoelectron to be ejected will be increased by a factor of 10. 

10. The materials called phosphors that coat the inside of a fluorescent lamp 

convert ultraviolet radiation (from the mercuryvapor discharge inside the tube) 

into visible light. Could one also make a phosphor that converts visible light to 

ultraviolet? Explain. 

11. In a photoelectric-effect experiment, which of the following will increase the 

maximum kinetic energy of the photoelectrons? (a) Use light of greater 

intensity; (b) use light of higher frequency; (c) use light of longer wavelength; 

(d) use a metal surface with a larger work function. In each case justify your 

answer. 

12. A photon of frequency ƒ undergoes Compton scattering from an electron at rest 

and scatters through an angle The frequency of the scattered photon is How is 

related to Does your answer depend on Explain. 

13. Can Compton scattering occur with protons as well as electrons? For example, 

suppose a beam of x rays is directed at a target of liquid hydrogen. (Recall that 

the nucleus of hydrogen consists of a single proton.) Compared to Compton 

scattering with electrons, what similarities and differences would you expect? 

Explain. 

14. Why must engineers and scientists shield against x-ray production in high-

voltage equipment? 

15. In attempting to reconcile the wave and particle models of light, some people 

have suggested that the photon rides up and down on the crests and troughs of 

the electromagnetic wave. What things are wrong with this description? 

16. If a proton and an electron have the same speed, which has the longer de 

Broglie wavelength? Explain. 

17. If a proton and an electron have the same kinetic energy, which has the longer 

de Broglie wavelength? Explain. 

18. Does a photon have a de Broglie wavelength? If so, how is it related to the 

wavelength of the associated electromagnetic wave? Explain. 
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19. When an electron beam goes through a very small hole, it produces a 

diffraction pattern on a screen, just like that of light. Does this mean that an 

electron spreads out as it goes through the hole? What does this pattern mean? 

20. Galaxies tend to be strong emitters of photons Lyman-α (from the n to n=1 

transition in atomic hydrogen). But the intergalactic medium—the very thin 

gas between the galaxies— tends to absorb photons. What can you infer from 

these observations about the temperature in these two environments?Explain. 

21. The emission of a photon by an isolated atom is a recoil process in which 

momentum is conserved. Thus Eq. (39.5) should include a recoil kinetic energy 

for the atom. Why is this energynegligible in that equation? 

22. How might the energy levels of an atom be measured directly—that is, without 

recourse to analysis of spectra? 

23. Elements in the gaseous state emit line spectra with welldefined wavelengths. 

But hot solid bodies always emit a continuous spectrum—that is, a continuous 

smear of wavelengths. Can you account for this difference? 

24. As a body is heated to a very high temperature and becomes self-luminous, the 

apparent color of the emitted radiation shifts from red to yellow and finally to 

blue as the temperature increases. Why does the color shift? What other 

changes in the character of the radiation occur? 

25. The peak-intensity wavelength of red dwarf stars, which have surface 

temperatures around 3000 K, is about 1000 nm, which is beyond the visible 

spectrum. So why are we able to see these stars, and why do they appear red? 

26. Why go through the expense of building an electron microscope for studying 

very small objects such as organic molecules? Why not just use extremely 

short electromagnetic waves, which are much cheaper to generate? 

27. Which has more total energy: a hydrogen atom with an electron in a high shell 

(large n) or in a low shell (small n)? Which is moving faster: the high-shell 

electron or the low-shell electron? Is there a contradiction here? Explain. 

28. Does the uncertainty principle have anything to do with marksmanship? That 

is, is the accuracy with which a bullet can be aimed at a target limited by the 

uncertainty principle? Explain. 

29. Suppose a two-slit interference experiment is carried out using an electron 

beam. Would the same interference pattern result if one slit at a time is 

uncovered instead of both at once? If not, why not? Doesn’t each electron go 

through one slit or the other? Or does every electron go through both slits? 

Discuss the latter possibility in light of the principle of complementarity. 

30. Laser light results from transitions from long-lived metastable states. Why is it 

more monochromatic than ordinary light? 

31. Could an electron-diffraction experiment be carried out using three or four 

slits? Using a grating with many slits? What sort of results would you expect 

with a grating? Would the uncertainty principle be violated? Explain. 

32. Why can an electron microscope have greater magnification than an ordinary 

microscope? 
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33. When you check the air pressure in a tire, a little air always escapes; the 

process of making the measurement changes the quantity being measured. 

Think of other examples of measurements that change or disturb the quantity 

being measured. 

 

3.3 Nuclei physics 

 
3.3.1 Properties of nuclei 

 

During the past century, applications of nuclear physics have had enormous 

effects on humankind, some beneficial, some catastrophic. Many people have strong 

opinions about applications such as bombs and reactors. Ideally, those opinions 

should be based on understanding, not on prejudice or emotion, and we hope this 

chapter will help you to reach that ideal. 

Every atom contains at its center an extremely dense, positively charged 

nucleus, which is much smaller than the overall size of the atom but contains most of 

its total mass. We will look at several important general properties of nuclei and of 

the nuclear force that holds them together. The stability or instability of a particular 

nucleus is determined by the competition between the attractive nuclear force among 

the protons and neutrons and the repulsive electrical interactions among the protons. 

Unstable nuclei decay, transforming themselves spontaneously into other nuclei by a 

variety of processes. Nuclear reactions can also be induced by impact on a nucleus of 

a particle or another nucleus. Two classes of reactions of special interest are fission 

and fusion. We could not survive without the energy released by one nearby fusion 

reactor, our sun. 

As we described, Rutherford found that the nucleus is tens of thousands of 

times smaller in radius than the atom itself. Since Rutherford’s initial experiments, 

many additional scattering experiments have been performed, using high-energy 

protons, electrons, and neutrons as well as alpha particles (helium-4 nuclei). These 

experiments show that we can model a nucleus as a sphere with a radius R that 

depends on the total number of nucleons (neutrons and protons) in the nucleus. This 

number is called the nucleon number A. The radii of most nuclei are represented 

quite well by the equation 

 

     
    (234) 

 

where    is an experimentally determined constant: 

 

                      
 

The nucleon number A in Eq. (234) is also called the mass number because it is the 

nearest whole number to the mass of the nucleus measured in unified atomic mass 

units (u). (The proton mass and the neutron mass are both approximately 1 u.) The 

best current conversion factor is 
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Note that when we speak of the masses of nuclei and particles, we mean their rest 

masses. 

The building blocks of the nucleus are the proton and the neutron. In a neutral 

atom, the nucleus is surrounded by one electron for every proton in the nucleus. The 

masses of these particles are 

 

Proton:                                

Neutron:                                

Electron:                                 

 

The number of protons in a nucleus is the atomic number Z. The number of neutrons 

is the neutron number N. The nucleon number or mass number A is the sum of the 

number of protons Z and the number of neutrons N: 

 

      (235) 
 

A single nuclear species having specific values of both Z and N is called a 

nuclide. The electron structure of an atom, which is responsible for its chemical 

properties, is determined by the charge Ze of the nucleus. The table shows some 

nuclides that have the same Z but different N. These nuclides are called isotopes of 

that element; they have different masses because they have different numbers of 

neutrons in their nuclei. A familiar example is chlorine (Cl, Z=17 ). About 76% of 

chlorine nuclei have N=18; the other 24% have N=20. Different isotopes of an 

element usually have slightly different physical properties such as melting and 

boiling temperatures and diffusion rates. The two common isotopes of uranium with 

A=235 and 238 are usually separated industrially by taking advantage of the different 

diffusion rates of gaseous uranium hexafluoride       containing the two isotopes. 

The symbol of the element, with a pre-subscript equal to Z and a pre-

superscript equal to the mass number A. The general format for an element El is    
 . 

The isotopes of chlorine mentioned above, with A=35 and 37, are written     
   and 

    
   and pronounced “chlorine-35” and “chlorine-37,” respectively. This name of the 

element determines the atomic number Z, so the pre-subscript Z is sometimes 

omitted, as in     . 

 

3.3.2 Radioactivity 
 

Among about 2500 known nuclides, fewer than 300 are stable. The others are 

unstable structures that decay to form other nuclides by emitting particles and 

electromagnetic radiation, a process called radioactivity. The time scale of these 

decay processes ranges from a small fraction of a microsecond to billions of years. 

The stable nuclides are shown by dots on the graph in Fig. 129, where the neutron 
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number N and proton number (or atomic number) Z for each nuclide are plotted. Such 

a chart is called a Segrи chart, after its inventor, the Italian-American physicist 

Emilio Segre (1905–1989). 

Each blue line perpendicular to the line N=Z represents a specific value of the 

mass number A=Z+N. Most lines of constant A pass through only one or two stable 

nuclides; that is, there is usually a very narrow range of stability for a given mass 

number. The lines at A=20, A=40, A=60, and A=80 are examples. In four cases these 

lines pass through three stable nuclides—namely, at A=96, 124, 130, and 136. 

 

 
Figure 129 - Segrè chart showing neutron number and proton number for stable 

nuclides 

 

Four stable nuclides have both odd Z and odd N: 
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These are called odd-odd nuclides. The absence of other odd-odd nuclides shows the 

influence of pairing. Also, there is no stable nuclide with A=5 or A=8. The doubly 

magic    
  nucleus, with a pair of protons and a pair of neutrons, has no interest in 

accepting a fifth particle into its structure. Collections of eight nucleons decay to 

smaller nuclides, with    
  a nucleus immediately splitting into two    

  nuclei. 

The points on the Segrи chart representing stable nuclides define a rather 

narrow stability region. For low mass numbers, the numbers of protons and neutrons 

are approximately equal,    . The ratio     increases gradually with A, up to 

about 1.6 at large mass numbers, because of the increasing influence of the electrical 

repulsion of the protons. Points to the right of the stability region represent nuclides 

that have too many protons relative to neutrons to be stable. In these cases, repulsion 

wins, and the nucleus comes apart. To the left are nuclides with too many neutrons 

relative to protons. In these cases the energy associated with the neutrons is out of 

balance with that associated with the protons, and the nuclides decay in a process that 

converts neutrons to protons. The graph also shows that no nuclide with       or 

     is stable. A nucleus is unstable if it is too big. Note that there is no stable 

nuclide with      (technetium) or 61 (promethium). 

Alpha Decay. Nearly 90% of the 2500 known nuclides are radioactive; they 

are not stable but decay into other nuclides. When unstable nuclides decay into 

different nuclides, they usually emit alpha (   or beta ( ) particles. An alpha 

particle is a    
  nucleus, two protons and two neutrons bound together, with total 

spin zero. Alpha emission occurs principally with nuclei that are too large to be 

stable. When a nucleus emits an alpha particle, its N and Z values each decrease by 2 

and A decreases by 4, moving it closer to stable territory on the Segre chart. 

A familiar example of an alpha emitter is radium,     
    (Fig. 130a). The speed 

of the emitted alpha particle, determined from the curvature of its path in a transverse 

magnetic field, is about             . This speed, although large, is only 5% of 

the speed of light, so we can use the nonrelativistic kinetic-energy expression 

  
 

 
   : 

 

  
 

 
                                                  

 

Alpha particles are always emitted with definite kinetic energies, determined by 

conservation of momentum and energy. Because of their charge and mass, alpha 

particles can travel only several centimeters in air, or a few tenths or hundredths of a 

millimeter through solids, before they are brought to rest by collisions.  
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Figure 130 – Alpha decay of the unstable radium nuclide     

    

 

Some nuclei can spontaneously decay by emission of particles because energy 

is released in their alpha decay. You can use conservation of mass-energy to show 

that 

alpha decay is possible whenever the mass of the original neutral atom is 

greater than the sum of the masses of the final neutral atom and the 

neutral helium-4 atom. 

In alpha decay, the   particle tunnels through a potential-energy barrier, as Fig. 130b 

shows. 

Beta Decay. There are three different simple types of beta decay: beta-minus, 

beta-plus, and electron capture. A beta-minus particle      is an electron. It’s not 

obvious how a nucleus can emit an electron if there aren’t any electrons in the 

nucleus. Emission of a    involves transformation of a neutron into a proton, an 

electron, and a third particle called an antineutrino. In fact, if you freed a neutron 

from a nucleus, it would decay into a proton, an electron, and an antineutrino in an 

average time of about 15 minutes. 

Beta particles can be identified and their speeds can be measured with 

techniques that are similar to the Thomson experiments. The speeds of beta particles 

range up to 0.9995 of the speed of light, so their motion is highly relativistic. They 

are emitted with a continuous spectrum of energies. This would not be possible if the 

only two particles were the    and the recoiling nucleus, since energy and 

momentum conservation would then require a definite speed for the   . Thus there 

must be a third particle involved. From conservation of charge, it must be neutral, and 

from conservation of angular momentum, it must be a spin ½  particle. 

This third particle is an antineutrino, the antiparticle of a neutrino. The 

symbol for a neutrino is    (the Greek letter nu). Both the neutrino and the 

antineutrino have zero charge and zero (or very small) mass and therefore produce 

very little observable effect when passing through matter. Both evaded detection until 

1953, when Frederick Reines and Clyde Cowan succeeded in observing the 

antineutrino directly. We now know that there are at least three varieties of neutrinos, 

each with its corresponding antineutrino; one is associated with beta decay and the 

other two are associated with the decay of two unstable particles, the muon and the 
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tau particle. The antineutrino that is emitted in    decay is denoted as    . The basic 

process of    decay is 

 

           (236) 
 

Beta-minus decay usually occurs with nuclides for which the neutron-to-proton 

ratio N/Z is too large for stability. In    decay, N decreases by 1, Z increases by 1, 

and A doesn’t change. You can use conservation of mass-energy to show that  

beta-minus decay can occur whenever the mass of the original neutral 

atom is larger than that of the final atom. 

We have noted that    decay occurs with nuclides that have too large a 

neutron-to-proton ratio N/Z. Nuclides for which N/Z is too small for stability can emit 

a positron, the electron’s antiparticle, which is identical to the electron but with 

positive charge. The basic process, called beta-plus decay      is 

 

          (237) 
 

where is    a positron and    is the electron neutrino. 

Beta-plus decay can occur whenever the mass of the original neutral atom 

is at least two electron masses larger than that of the final atom. 

You can show this using conservation of mass-energy. 

The third type of beta decay is electron capture. There are a few nuclides for 

which    emission is not energetically possible but in which an orbital electron 

(usually in the K shell) can combine with a proton in the nucleus to form a neutron 

and a neutrino. The neutron remains in the nucleus and the neutrino is emitted. The 

basic process is 

 

          (238) 
 

You can use conservation of mass-energy to show that 

electron capture can occur whenever the mass of the original neutral atom 

is larger than that of the final atom. 

In all types of beta decay, A remains constant. However, in beta-plus decay and 

electron capture, N increases by 1 and Z decreases by 1 as the neutron–proton ratio 

increases toward a more stable value. The reaction of Eq. (238) also helps to explain 

the formation of a neutron star. 

 

3.3.3 Nuclei reactions 

 

In the preceding sections we studied the decay of unstable nuclei, especially 

spontaneous emission of an   or   particle, sometimes followed by   emission. 

Nothing needs to be done to initiate this decay, and nothing can be done to control it. 

This section examines some nuclear reactions, rearrangements of nuclear components 

that result from a bombardment by a particle rather than a spontaneous natural 
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process. Rutherford suggested in 1919 that a massive particle with sufficient kinetic 

energy might be able to penetrate a nucleus. The result would be either a new nucleus 

with greater atomic number and mass number or a decay of the original nucleus. 

Rutherford bombarded nitrogen    
    with particles and obtained an oxygen    

    
nucleus and a proton: 

 

   
    

     
     

  (239) 
 

Rutherford used alpha particles from naturally radioactive sources. Early we’ll 

describe some of the particle accelerators that are now used to initiate nuclear 

reactions. 

Nuclear reactions are subject to several conservation laws. The classical 

conservation principles for charge, momentum, angular momentum, and energy 

(including rest energies) are obeyed in all nuclear reactions. An additional 

conservation law, not anticipated by classical physics, is conservation of the total 

number of nucleons. The numbers of protons and neutrons need not be conserved 

separately; in   decay, neutrons and protons change into one another.  

When two nuclei interact, charge conservation requires that the sum of the 

initial atomic numbers must equal the sum of the final atomic numbers. Because of 

conservation of nucleon number, the sum of the initial mass numbers must also equal 

the sum of the final mass numbers. In general, these are not elastic collisions, and the 

total initial mass does not equal the total final mass. 

The difference between the masses before and after the reaction corresponds to 

the reaction energy, according to the mass–energy relationship      . If initial 

particles A and B interact to produce final particles C and D, the reaction energy Q is 

defined as 

 

                
  (240) 

 

To balance the electrons, we use the neutral atomic masses in Eq. (240). That is, we 

use the mass of   
  for a proton,   

  for a deuteron,    
  for an   particle, and so on. 

When Q is positive, the total mass decreases and the total kinetic energy increases. 

Such a reaction is called an exoergic reaction. When Q is negative, the mass increases 

and the kinetic energy decreases, and the reaction is called an endoergic reaction. The 

terms exothermal and endothermal, borrowed from chemistry, are also used. In an 

endoergic reaction the reaction cannot occur at all unless the initial kinetic energy in 

the center-of-mass reference frame is at least as great as    . That is, there is a 

threshold energy, the minimum kinetic energy to make an endoergic reaction go. 

Ordinarily, the endoergic reaction of part (b) of Example 43.11 would be 

produced by bombarding stationary   
   nuclei with alpha particles from an 

accelerator. In this case an alpha’s kinetic energy must be greater than 1.192 MeV. If 

all the alpha’s kinetic energy went solely to increasing the rest energy, the final 

kinetic energy would be zero, and momentum would not be conserved. When a 

particle with mass m and kinetic energy K collides with a stationary particle with 
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mass M, the total kinetic energy Kcm in the center-of-mass coordinate system (the 

energy available to cause reactions) is 

 

    
 

   
  

(241) 

 

This expression assumes that the kinetic energies of the particles and nuclei are 

much less than their rest energies. 

 

Discussion questions 

1. Can a hydrogen atom emit x rays? If so, how? If not, why not? 

2. Neutrons have a magnetic dipole moment and can undergo spin flips by 

absorbing electromagnetic radiation. Why, then, are protons rather than 

neutrons used in MRI of body tissues? 

3. Why aren’t the masses of all nuclei integer multiples of the mass of a single 

nucleon? 

4. What are the six known elements for which Z is a magic number? Discuss what 

properties these elements have as a consequence of their special values of Z. 

5. Heavy, unstable nuclei usually decay by emitting an α or particle. Why don’t 

they usually emit a single proton or neutron? 

6. The only two stable nuclides with more protons than neutrons   
  are and    

 . 

Why is Z>N so uncommon? 

7. Compared to particles with the same energy, particles can much more easily 

penetrate through matter. Why is this? 

8. In a nuclear decay equation, why can we represent an electron as     
 ?. What 

are the equivalent representations for a positron, a neutrino, and an 

antineutrino? 

9. Why is the alpha, beta, or gamma decay of an unstable nucleus unaffected by 

the chemical situation of the atom, such as the nature of the molecule or solid 

in which it is bound? The chemical situation of the atom can, however, have an 

effect on the half-life in electron capture. Why is this? 

10. In the process of internal conversion, a nucleus decays from an excited state to 

a ground state by giving the excitation energy directly to an atomic electron 

rather than emitting a gamma-ray photon. Why can this process also produce 

x-ray photons? 

11. The activity of atmospheric carbon before 1900 was given. Discuss why this 

activity may have changed since 1900. 

12. One problem in radiocarbon dating of biological samples, especially very old 

ones, is that they can easily be contaminated with modern biological material 

during the measurement process. What effect would such contamination have 

on the estimated age? Why is such contamination a more serious problem for 

samples of older material than for samples of younger material?  
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13. The most common radium isotope found on earth, has a half-life of about 1600 

years. If the earth was formed well over 10
9
 years ago, why is there any radium 

left now? 

14. Fission reactions occur only for nuclei with large nucleon numbers, while 

exoergic fusion reactions occur only for nuclei with small nucleon numbers. 

Why is this? 

15. When a large nucleus splits during nuclear fission, the daughter nuclei of the 

fission fly apart with enormous kineticenergy. Why does this happen? 

16. As stars age, they use up their supply of hydrogen and eventually begin 

producing energy by a reaction that involves the fusion of three helium nuclei 

to form a carbon nucleus. Would you expect the interiors of these old stars to 

be hotter or cooler than the interiors of younger stars? Explain. 
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