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Introduction 

 

 

Physics is one of the most fundamental of the sciences. Scientists of all 

disciplines use the ideas of physics, including chemists who study the structure of 

molecules, paleontologists who try to reconstruct how dinosaurs walked, and 

climatologists who study how human activities affect the atmosphere and oceans. 

Physics is also the foundation of all engineering and technology. No engineer 

could design a flat-screen TV, an interplanetary spacecraft, or even a better 

mousetrap without first understanding the basic laws of physics. The study of 

physics is also an adventure. You will find it challenging, sometimes frustrating, 

occasionally painful, and often richly rewarding. If you’ve ever wondered why the 

sky is blue, how radio waves can travel through empty space, or how a satellite 

stays in orbit, you can find the answers by using fundamental physics. You will 

come to see physics as a towering achievement of the human intellect in its quest 

to understand our world and ourselves. 

We’ll discuss the nature of physical theory and the use of idealized models 

to represent physical systems. We’ll introduce the systems of units used to describe 

physical quantities and discuss ways to describe the accuracy of a number. We’ll 

look at examples of problems for which we can’t (or don’t want to) find a precise 

answer, but for which rough estimates can be useful and interesting. Finally, we’ll 

study several aspects of vectors and vector algebra. Vectors will be needed 

throughout our study of physics to describe and analyze physical quantities, such 

as velocity and force, that have direction as well as magnitude. 

Physics is an experimental science. Physicists observe the phenomena of 

nature and try to find patterns that relate these phenomena. These patterns are 

called physical theories or, when they are very well established and widely used, 

physical laws or principles. 

To develop a physical theory, a physicist has to learn to ask appropriate 

questions, design experiments to try to answer the questions, and draw appropriate 

conclusions from the results.  

The development of physical theories often takes an indirect path, with blind 

alleys, wrong guesses, and the discarding of unsuccessful theories in favor of more 

promising ones. Physics is not simply a collection of facts and principles; it is also 

the process by which we arrive at general principles that describe how the physical 

universe behaves. 

No theory is ever regarded as the final or ultimate truth. The possibility 

always exists that new observations will require that a theory be revised or 

discarded. It is in the nature of physical theory that we can disprove a theory by 

finding behaviour that is inconsistent with it, but we can never prove that a theory 

is always correct. 

Getting back to Galileo, suppose we drop a feather and a cannonball. They 

certainly do not fall at the same rate. This does not mean that Galileo was wrong; it 

means that his theory was incomplete. If we drop the feather and the cannonball in 
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a vacuum to eliminate the effects of the air, then they do fall at the same rate. 

Galileo’s theory has a range of validity: It applies only to objects for which the 

force exerted by the air (due to air resistance and buoyancy) is much less than the 

weight. Objects like feathers or parachutes are clearly outside this range. 

Often a new development in physics extends a principle’s range of validity. 

Galileo’s analysis of falling bodies was greatly extended half a century later by 

Newton’s laws of motion and law of gravitation. 
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Topic 1 MECHANICS 

 

 

1.1 Motion along a straight-line. Motion in a circle 

 

1.1.1 Average velocity and instantaneous velocity 

 

Suppose a drag racer drives her AA-fuel dragster along a straight track (see 

fig. 1). To study the dragster’s motion, we need a coordinate system. We choose 

the x-axis to lie along the dragster’s straight-line path, with the origin O at the 

starting 

line. We also choose a point on the dragster, such as its front end, and represent 

the entire dragster by that point. Hence we treat the dragster as a particle. 

 

 
Figure 1 – Positions of dragster at two times during its run 

 

A useful way to describe the motion of the particle that represents the 

dragster is in terms of the change in the particle’s coordinate x over a time interval. 

Suppose that 1.0 s after the start the front of the dragster is at point   , 19 m from 

the origin, and 4.0 s after the start it is at point   , 277 m from the origin. The 

displacement of the particle is a vector that points from    to   . Figure 1 shows 

that this vector points along the x-axis. The x-component of the displacement is the 

change in the value of x,                   , that took place during the 

time interval of                . We define the dragster’s average velocity 

during this time interval as a vector quantity whose x-component is the change in x 

divided by the time interval:                       . 

In general, the average velocity depends on the particular time interval 

chosen. For a 3.0-s time interval before the start of the race, the average velocity 

would be zero because the dragster would be at rest at the starting line and would 

have zero displacement. 

Let’s generalize the concept of average velocity. At time    the dragster is at 
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point    with coordinate    and at    time it is at point    with coordinate   . The 

displacement of the dragster during the time interval from    to    is the vector 

from    to   . The x-component of the displacement, denoted   , is the change in 

the coordinate x: 

 

         (1) 

 

The dragster moves along the x-axis only, so the y- and z-components of the 

displacement are equal to zero. 

The x-component of average velocity, or average x-velocity, is the x-

component of displacement,   , divided by the time interval    during which the 

displacement occurs. We use the symbol       for average x-velocity (the 

subscript “av” signifies average value and the subscript x indicates that this is the 

x-component): 

 

      
     
     

 
  

  
 

(2) 

 

As an example, for the dragster        ,         ,          and 

        , so Eq. (2) gives 

 

      
          

           
 
     

     
        

 

The average x-velocity of the dragster is positive. This means that during the time 

interval, the coordinate x increased and the dragster moved in the positive x-

direction (to the right in Fig. 1). 

 

 
Figure 2 – Positions of an official’s truck at two times during its motion. The 

points    and    now indicate the positions of the truck, and so are reverse of Fig.1 
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If a particle moves in the negative x-direction during a time interval, its 

average velocity for that time interval is negative. For example, suppose an 

official’s truck moves to the left along the track (see fig. 2). The truck is    
      at             at and is at         at          . Then   
                   and                         . The x-

component of average velocity is       
  

  
                         . 

Sometimes the average velocity is all you need to know about a particle’s 

motion. For example, a race along a straight line is really a competition to see 

whose average velocity      , has the greatest magnitude. The prize goes to the 

competitor who can travel the displacement from the start to the finish line in the 

shortest time interval,    (see fig. 3). 

 

 
Figure 3 – The winner of a 50-m swimming race is the swimmer whose average 

velocity has the greatest magnitude – that is, the swimmer who traverses a 

displacement    of 50 m in the shortest elapsed time    
 

But the average velocity of a particle during a time interval can’t tell us how 

fast, or in what direction, the particle was moving at any given time during the 

interval. To do this we need to know the instantaneous velocity, or the velocity 

at a specific instant of time or specific point along the path. 

To find the instantaneous velocity of the dragster in Fig. 1 at the point   , we 

move the second point    closer and closer to the first point    and compute the 

average velocity       over the ever-shorter displacement and time interval. Both 

   and    become very small, but their ratio does not necessarily become small. In 

the language of calculus, the limit of       as    approaches zero is called the 

derivative of x with respect to t and is written      . The instantaneous velocity is 

the limit of the average velocity as the time interval approaches zero; it equals the 

instantaneous rate of change of position with time. We use the symbol with no 

“av” subscript, for the instantaneous velocity along the x-axis, or the 

instantaneous x-velocity: 
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(3) 

 

The time interval    is always positive, so    has the same algebraic sign as 

  . A positive value of    means that x is increasing and the motion is in the 

positive x-direction; a negative value of    means that x is decreasing and the 

motion is in the negative x-direction. A body can have positive x and negative    

or the reverse; x tells us where the body is, while    tells us how it’s moving (see 

fig. 4). 

 

 
Figure 4 – Even when he’s moving forward, this cyclist’s instantaneous x-velocity 

can be negative – if he’s travelling in the negative x-direction. In any problem, the 

choice of which direction is positive and which is negative is entirely up to you 

 

Instantaneous velocity, like average velocity, is a vector quantity; Eq. (3) 

defines its x-component. In straight-line motion, all other components of 

instantaneous velocity are zero. In this case we often call    simply the 

instantaneous velocity. When we use the term “velocity,” we will always mean 

instantaneous rather than average velocity. 

The terms “velocity” and “speed” are used interchangeably in everyday 

language, but they have distinct definitions in physics. We use the term speed to 

denote distance traveled divided by time, on either an average or an instantaneous 

basis. Instantaneous speed, for which we use the symbol   with no subscripts, 

measures how fast a particle is moving; instantaneous velocity measures how fast 

and in what direction it’s moving. Instantaneous speed is the magnitude of 

instantaneous velocity and so can never be negative. For example, a particle with 
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instantaneous velocity           and a second particle with            are 

moving in opposite directions at the same instantaneous speed 25 m/s. 

 

1.1.2 Average and instantaneous acceleration 

 

Just as velocity describes the rate of change of position with time, 

acceleration describes the rate of change of velocity with time. Like velocity, 

acceleration is a vector quantity. When the motion is along a straight line, its only 

nonzero component is along that line. As we’ll see, acceleration in straight-line 

motion can refer to either speeding up or slowing down. 

Let’s consider again a particle moving along the x-axis. Suppose that at time 

   the particle is at point    and has x-component of (instantaneous) velocity     

and at a later time    it is at point    and has x-component of velocity    . So the 

x-component of velocity changes by an amount             during the time 

interval         . 

We define the average acceleration of the particle as it moves from    to    

to be a vector quantity whose x-component       (called the average x-

acceleration) equals    , the change in the x-component of velocity, divided by 

the time interval   : 
 

      
       
     

 
   
  

 
(4) 

 

For straight-line motion along the x-axis we will often call simply the 

average acceleration. If we express velocity in meters per second and time in 

seconds, then average acceleration is in meters per second per second, or This is 

usually written as and is read “meters per second squared.” 

The upper part of Fig. 5 is our graph of the x-velocity as a function of time. 

On this      graph, the slope of the line connecting the endpoints of each interval 

is the average x-acceleration              for that interval. The four slopes 

(and thus the signs of the average accelerations) are, respectively, positive, 

negative, negative, and positive. The third and fourth slopes (and thus the average 

accelerations themselves) have greater magnitude than the first and second. 

We can now define instantaneous acceleration following the same 

procedure that we used to define instantaneous velocity. As an example, suppose a 

race car driver is driving along a straightaway. To define the instantaneous 

acceleration at point    we take the second point    to be closer and closer to so 

that the average acceleration is computed over shorter and shorter time intervals. 

The instantaneous acceleration is the limit of the average acceleration as the time 

interval approaches zero. In the language of calculus, instantaneous acceleration 

equals the derivative of velocity with time. Thus 

 

      
    

   
  

 
   
  

 
(5) 
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Figure 5 – Our graphs of x-velocity versus time (top) and average x-acceleration 

versus time (bottom) 

 

Note that in Eq. (5) is really the x-component of the acceleration vector, 

or the instantaneous x-acceleration; in straight-line motion, all other components 

of this vector are zero. From now on, when we use the term “acceleration,” we will 

always mean instantaneous acceleration, not average acceleration. 

 

1.1.3 Motion with constant acceleration 

 

The simplest kind of accelerated motion is straight-line motion with constant 

acceleration. In this case the velocity changes at the same rate throughout the 

motion. As an example, a falling body has a constant acceleration if the effects of 

the air are not important. The same is true for a body sliding on an incline or along 

a rough horizontal surface, or for an airplane being catapulted from the deck of an 

aircraft carrier. 

Figure 6 is a motion diagram showing the position, velocity, and 

acceleration for a particle moving with constant acceleration. Figures 7 and 8 

depict this same motion in the form of graphs. Since the x-acceleration is constant, 

the ax-t graph (graph of x-acceleration versus time) in Fig. 7 is a horizontal line. 
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The graph of x-velocity versus time, or vx-t graph, has a constant slope because the 

acceleration is constant, so this graph is a straight line (see fig. 8). 

 

 
Figure 6 – A motion diagram for a particle moving in a straight-line in the positive 

x-direction with constant positive x-acceleration ax. The position, velocity and 

acceleration are shown at five equally spaced times 

 

 
Figure 7 – An acceleration-time (ax-t) for straight-line motion with constant 

positive x-acceleration ax 
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Figure 8 – A velocity-time (vx-t) graph for straight-line motion with constant 

positive x-acceleration ax. The initial x-velocity v0x is also positive in this case 

 

When the x-acceleration  ax i s constant, the average x-acceleration aav-x for 

any time interval is the same as ax. This makes it easy to derive equations for the 

position x and the x-velocity vx as functions of time. To find an expression for vx 

we first replace aav-x in Eq. (2.4) by ax: 

 

    
       
     

 
(6) 

 

Now we let      and let    be any later time t. We use the symbol     for the x-

velocity at the initial time    ; the x-velocity at the later time t is   . 

Then Eq. (6) becomes 

 

    
      
   

 
(7) 

or 

              (8) 

 

In Eq. (8) the term      is the product of the constant rate of change of x-

velocity,     and the time interval t. Therefore it equals the total change in x-

velocity from the initial time     to the later time t. The x-velocity at any time t 
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then equals the initial x-velocity     (at    ) plus the change in x-velocity      
(see fig. 8). 

Equation (8) also says that the change in x-velocity        of the particle 

between     and any later time t equals the area under       the graph between 

those two times. You can verify this from Fig. 7: Under this graph is a rectangle of 

vertical side    , horizontal side t, and area     . From Eq. (8) this is indeed equal 

to the change in velocity        Next we’ll show that even if the x-acceleration 

is not constant, the change in x-velocity during a time interval is still equal to the 

area under the       curve, although in that case Eq. (8) does not apply. 

Next we’ll derive an equation for the position x as a function of time when 

the x-acceleration is constant. To do this, we use two different expressions for the 

average x-velocity       during the interval from to any later time t. The first 

expression comes from the definition of       Eq. (2), which is true whether or not 

the acceleration is constant. We call the position at time     the initial position, 

denoted by   . The position at the later time t is simply x. Thus for the time 

interval        the displacement is         and Eq. (2) gives 

 

       
    

 
 

(9) 

 

We can also get a second expression for       that is valid only when the x-

acceleration is constant, so that the x-velocity changes at a constant rate. In this 

case the average x-velocity for the time interval from 0 to t is simply the average of 

the x-velocities at the beginning and end of the interval: 

 

      
      

 
 

(10) 

 

(This equation is not true if the x-acceleration varies during the time interval.) We 

also know that with constant x-acceleration, the x-velocity    at any time t is given 

by Eq. (8). Substituting that expression for    into Eq. (10), we find 

 

      
 

 
                   

 

 
     

(11) 

 

Finally, we set Eqs. (9) and (11) equal to each other and simplify: 

 

    
 

 
     

    
 

 
(12) 

or 

          
 

 
    

  
(13) 

 

Here’s what Eq. (13) tells us: If at time     a particle is at position    and 

has x-velocity    , its new position x at any later time t is the sum of three terms - 
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its initial position   , plus the distance      that it would move if its x-velocity 

were constant, plus an additional distance 
 

 
    

  caused by the change in x-

velocity. 

A graph of Eq. (13) - that is, an x-t graph for motion with constant x-

acceleration (see fig. 9a) - is always a parabola. Figure 9b shows such a graph. 

The curve intercepts the vertical axis (x-axis) at    the position at    . The slope 

of the tangent at     equals     , the initial x-velocity, and the slope of the 

tangent at any time t equals the x-velocity    at that time. The slope and x-velocity 

are continuously increasing, so the x-acceleration     is positive; you can also see 

this because the graph in Fig. 9b is concave up (it curves upward). If     is 

negative, the x-t graph is a parabola that is concave down (has a downward 

curvature). 

 

 
(a)      (b) 

Figure 9 – (a) Straight-line motion with constant acceleration. (b) A position-time 

(x-t) graph for this motion. For this motion the position   , the initial velocity    , 

and acceleration     are all positive 

 

If there is zero x-acceleration, the x-t graph is a straight line; if there is a 

constant x-acceleration, the additional 
 

 
    

  term in Eq. (13) for x as a function of 

t curves the graph into a parabola (see fig. 9a). We can analyze the      graph in 

the same way. If there is zero x-acceleration this graph is a horizontal line (the x-

velocity is constant); adding a constant x-acceleration gives a slope to the      
graph (see fig. 9b). 
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(a)      (b) 

Figure 10 – (a) How a constant x-acceleration affects a body’s (a) x-t graph and (b) 

vx-t graph 

 

Just as the change in x-velocity of the particle equals the area under the 

      graph, the displacement—that is, the change in position—equals the area 

under the  vx-t  graph. To be specific, the displacement      of the particle 

between     and any later time t equals the area under the      graph between 

those two times. In Fig. 8 we divide the area under the graph into a dark-colored 

rectangle (vertical side    , horizontal side t, and area    ) and a light-colored 

right triangle (vertical side    , horizontal side t, and area 
 

 
         

 

 
    

 . 

The total area under the      graph is 

 

          
 

 
    

  
(14) 

 

in agreement with Eq. (13). 

The displacement during a time interval is always equal to the area under the 

     curve. This is true even if the acceleration is not constant, although in that 

case Eq. (13) does not apply. 

It’s often useful to have a relationship for position, x-velocity, and (constant) 

x-acceleration that does not involve the time. To obtain this, we first solve Eq. (8) 

for t and then substitute the resulting expression into Eq. (13): 

 

  
      

  
 

         
      

  
  

 

 
    

      
  

 
 

 

 

(15) 

 

(16) 

 

We transfer the term to the left side and multiply through by    : 
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  (17) 

 

Finally, simplifying gives us 

 

  
     

            (18) 

 

We can get one more useful relationship by equating the two expressions for 

       Eqs. (9) and (10), and multiplying through by t. Doing this, we obtain 

 

      
      

 
   (19) 

 

Note that Eq. (19) does not contain the x-acceleration   . This equation can be 

handy when    is constant but its value is unknown. 

Equations (8), (13), (18), and (19) are the equations of motion with constant 

acceleration (Table 1). By using these equations, we can solve any problem 

involving straight-line motion of a particle with constant acceleration. 

For the particular case of motion with constant x-acceleration depicted in 

Fig. 6 and graphed in Figs. 7, 8, and 9, the values of    ,     and    are all 

positive. We invite you to redraw these figures for cases in which one, two, or all 

three of these quantities are negative. 

 

Table 1 - Equations of motion with constant acceleration 

Equation № Includes quantities 

              (8)           

          
 

 
    

  
(13)         

  
     

            (18)           

      
      

 
   (19)          

 

1.1.4 Position, velocity and acceleration vectors 

 

To describe the motion of a particle in space, we must first be able to 

describe the particle’s position. Consider a particle that is at a point P at a certain 

instant. The position vector    of the particle at this instant is a vector that goes 

from the origin of the coordinate system to the point P (see fig. 11). The Cartesian 

coordinates x, y, and z of point P are the x-, y-, and z-components of vector    . 
Using the unit vectors, we can write 

 

                (20) 

 

During a time interval    the particle moves from   , where its position 

vector is    , to   , where its position vector is    . The change in position (the 
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displacement) during this interval is                                 

          . We define the average velocity      during this interval, as the 

displacement divided by the time interval: 

 

     
       
     

 
   

  
 

(21) 

 

Dividing a vector by a scalar is really a special case of multiplying a vector by a 

scalar the average velocity      is equal to the displacement vector     multiplied by 
 

  
, the reciprocal of the time interval. Note that the x-component of Eq. (21) is 

      
       

       
      . This is just Eq. (2), the expression for average x-

velocity that we found early for one-dimensional motion.  

 

 
Figure 11 – The position vector    from the origin to point P has x, y and z. The 

path that the particle follows through space is in general a curve (see fig. 12) 

 

We now define instantaneous velocity: It is the limit of the average velocity 

as the time interval approaches zero, and it equals the instantaneous rate of change 

of position with time. The key difference is that position    and instantaneous 

velocity    are now both vectors: 

 

      
    

   

  
 
   

  
 

(22) 
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The magnitude of the vector    at any instant is the speed   of the particle at that 

instant. The direction    of at any instant is the same as the direction in which the 

particle is moving at that instant. 

Note that as      points    and    in Fig. 12 move closer and closer 

together. In this limit, the vector     becomes tangent to the path. The direction of 

in this limit is also the direction of the instantaneous velocity   . This leads to an 

important conclusion: At every point along the path, the instantaneous velocity 

vector is tangent to the path at that point (see fig. 13). 

 

 
Figure 12 – The average velocity      between points    and    has the same 

direction as the displacement     
 

 
Figure 13 –The vectors     and     are the instantaneous velocities at the points    

and    shown in Fig. 12 
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It’s often easiest to calculate the instantaneous velocity vector using 

components. During any displacement    , the changes       and    in the three 

coordinates of the particle are the components of    . It follows that the 

components       and    of the instantaneous velocity    are simply the time 

derivatives of the coordinates x, y, and z. That is, 

 

   
  

  
    

  

  
    

  

  
 

(23) 

 

Hence Eq. (23) is a direct extension of the idea of instantaneous velocity to motion 

in three dimensions. 

We can also get Eq. (23) by taking the derivative of Eq. (20). The unit 

vectors       and    are constant in magnitude and direction, so their derivatives are 

zero, and we find 

 

   
   

  
 
  

  
   

  

  
   

  

  
    

(24) 

 

This shows again that the components of    are 
  

  
 
  

  
  and  

  

  
. 

The magnitude of the instantaneous velocity vector   —that is, the speed—is 

given in terms of the components       and    by the Pythagorean relation: 

 

          
    

    
  

(25) 

 

Figure 14 shows the situation when the particle moves in the xy-plane. In 

this case, z and    are zero. Then the speed (the magnitude of   ) is  

 

     
    

  
(26) 

 

and the direction of the instantaneous velocity    is given by the angle   (the Greek 

letter alpha) in the figure. We see that 

 

     
  
  

 
(27) 

 

(We always use Greek letters for angles. We use for the direction of the 

instantaneous velocity vector to avoid confusion with the direction   of the 

position vector of the particle.) 

The instantaneous velocity vector is usually more interesting and useful than 

the average velocity vector. From now on, when we use the word “velocity,” we 

will always mean the instantaneous velocity vector    (rather than the average 
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velocity vector). Usually, we won’t even bother to call    a vector; it’s up to you to 
remember that velocity is a vector quantity with both magnitude and direction. 

 

 
Figure 14 The two velocity components for motion in the xy-plane 

 

Now let’s consider the acceleration of a particle moving in space. Just as for 

motion in a straight line, acceleration describes how the velocity of the particle 

changes. But since we now treat velocity as a vector, acceleration will describe 

changes in the velocity magnitude (that is, the speed) and changes in the direction 

of velocity (that is, the direction in which the particle is moving). 

In Fig. 15a, a car (treated as a particle) is moving along a curved road. The 

vectors     and     represent the car’s instantaneous velocities at time   , when the 

car is at point    and at time    when the car is at point   . The two velocities may 

differ in both magnitude and direction. During the time interval from    to   , the 

vector change in velocity is             , so             (see fig. 15b). We 

define the average acceleration      of the car during this time interval as the 

velocity change divided by the time interval         : 
 

     
       
     

 
   

  
 

(28) 
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Figure 15 – (a) A car moving along a curved road from    to   . (b) How to obtain 

the change in velocity             by vector subtraction. (c) The vector      
   / t represents the average acceleration between    and    

 

Average acceleration is a vector quantity in the same direction as the vector 

    (see fig. 15c). 

As early we define the instantaneous acceleration    (a vector quantity) at 

point    as the limit of the average acceleration vector when point    approaches 

point   , so     and    both approach zero (see fig. 16). The instantaneous 

acceleration is also equal to the instantaneous rate of change of velocity with time: 

 

      
    

   

  
 
   

  
 

(29) 

 

The velocity vector   , as we have seen, is tangent to the path of the particle. 

The instantaneous acceleration vector   , however, does not have to be tangent to 

the path. Figure 16a shows that if the path is curved   , points toward the concave 

side of the path—that is, toward the inside of any turn that the particle is making. 

The acceleration is tangent to the path only if the particle moves in a straight line 

(see fig. 16b). 
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Figure 16 – (a) Instantaneous acceleration at a point    in fig. 15. (b) Instantaneous 

acceleration for motion along a straight line 

 

To convince yourself that a particle has a nonzero acceleration when moving 

on a curved path with constant speed, think of your sensations when you ride in a 

car. When the car accelerates, you tend to move inside the car in a direction 

opposite to the car’s acceleration. Thus you tend to slide toward the back of the car 

when it accelerates forward (speeds up) and toward the front of the car when it 

accelerates backward (slows down). If the car makes a turn on a level road, you 

tend to slide toward the outside of the turn; hence the car has an acceleration 

toward the inside of the turn. 

We will usually be interested in the instantaneous acceleration, not the 

average acceleration. From now on, we will use the term “acceleration” to mean 

the instantaneous acceleration vector   . 
Each component of the acceleration vector is the derivative of the 

corresponding component of velocity: 

 

   
   
  

    
   
  

    
   
  

 
(30) 



25 
 

 

In terms of unit vectors, 

 

   
   
  

   
   
  

   
   
  

    
(31) 

 

Figure 17 shows an example of an acceleration vector that has both x- and y-

components. 

 

 
Figure 17 – When arrow is released, its acceleration vector has both a horizontal  

component    and a vertical component    

 

Since each component of velocity is the derivative of the corresponding 

coordinate, we can express the components       and    of the acceleration vector 

as 

 

   
   

   
    

   

   
    

   

   
 

(32) 

 

The acceleration vector itself is 

 

   
   

   
   

   

   
   

   

   
    

(33) 
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1.1.5 Motion in a circle 

 

When a particle moves along a curved path, the direction of its velocity 

changes. Еhis means that the particle must have a component of acceleration 

perpendicular to the path, even if its speed is constant (see Fig. 18b). In this section 

we’ll calculate the acceleration for the important special case of motion in a circle. 

 

 
Figure 18 – The effect of acceleration directed (a) parallel to and (b) 

perpendicular to a particle’s velocity 

 

When a particle moves in a circle with constant speed, the motion is called 

uniform circular motion. A car rounding a curve with constant radius at constant 

speed, a satellite moving in a circular orbit, and an ice skater skating in a circle 

with constant speed are all examples of uniform circular motion (see fig. 20c; 

compare Fig. 19a). There is no component of acceleration parallel (tangent) to the 

path; otherwise, the speed would change. The acceleration vector is perpendicular 

(normal) to the path and hence directed inward (never outward!) toward the center 

of the circular path. This causes the direction of the velocity to change without 

changing the speed. 

 

 
Figure 19 – Velocity and acceleration vectors for a particle moving through a point 

P on a curved path with (a) constant speed, (b) increasing speed, (c) decreasing 

speed 
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Figure 20 – A car moving along a circular path. If the car is in uniform circular 

motion as in (c), the speed is constant and the acceleration is directed towards the 

center of the circular path (compare Fig. 19) 

 

We can find a simple expression for the magnitude of the acceleration in 

uniform circular motion. We begin with Fig. 21a, which shows a particle moving 

with constant speed in a circular path of radius R with center at O. The particle 

moves from    to    in a time   . The vector change in velocity     during this 

time is shown in Fig. 21b. 

The angles labeled    in Figs. 21a and 21b are the same because     is 

perpendicular to the line     and     is perpendicular to the line Hence the 

triangles in Figs. 21a and 21b are similar. The ratios of corresponding sides of 

similar triangles are equal, so 

 
     

  
 
  

 
 

(34) 

or 

      
  
 
   

(35) 

 

The magnitude of     the average acceleration during    is therefore 

 

    
     

  
 
  
 

  

  
 

(36) 

 

The magnitude a of the instantaneous acceleration    at point    is the limit of this 

expression as we take point    closer and closer to point   : 
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(37) 

 

If the time interval    is short,    is the distance the particle moves along its 

curved path. So the limit       of is the speed    at point   . Also,    can be any 

point on the path, so we can drop the subscript and let represent the speed at any 

point. Then 

 

     
  

 
 

(38) 

 

 
Figure 21 – Finding the velocity change    , average acceleration      and 

instantaneous acceleration       for a particle moving in a circle with constant 

speed 

 

We have added the subscript “rad” as a reminder that the direction of the 

instantaneous acceleration at each point is always along a radius of the circle 

(toward the center of the circle; see Figs. 20c and 21c). So we have found that in 
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uniform circular motion, the magnitude of the instantaneous acceleration isequal 

to the square of the speed divided by the radius R of the circle. Its direction is 

perpendicular to    and inward along the radius. 

Because the acceleration in uniform circular motion is always directed 

toward the center of the circle, it is sometimes called centripetal acceleration. 

The word “centripetal” is derived from two Greek words meaning “seeking the 

center.” Figure 22a shows the directions of the velocity and acceleration vectors at 

several points for a particle moving with uniform circular motion. 

We can also express the magnitude of the acceleration in uniform circular 

motion in terms of the period T of the motion, the time for one revolution (one 

complete trip around the circle). In a time T the particle travels a distance equal to 

the circumference     of the circle, so its speed is 

 

  
   

 
 

(39) 

 

When we substitute this into Eq. (38), we obtain the alternative expression  

 

     
    

  
 

(40) 

 

 
Figure 22 – Acceleration and velocity (a) for a particle in uniform circular motion 

and (b) for a projectile with no air resistance 

 

1.2 Newton’s laws of motion 

 

1.2.1 Force and interactions 

 

In everyday language, a force is a push or a pull. Abetter definition is that a 

force is an interaction between two bodies or between a body and its environment 
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(see fig. 23). That’s why we always refer to the force that one body exerts on a 

second body. When you push on a car that is stuck in the snow, you exert a force 

on the car; a steel cable exerts a force on the beam it is hoisting at a construction 

site; and so on. As Fig. 23 shows, force is a vector quantity; you can push or pull a 

body in different directions. 

 

 
Figure 23 – Some properties of forces 

 

When a force involves direct contact between two bodies, such as a push or 

pull that you exert on an object with your hand, we call it a contact force. Figures 

24a, 24b, and 24c show three common types of contact forces. The normal force 

(see fig. 24a) is exerted on an object by any surface with which it is in contact. The 

adjective normal means that the force always acts perpendicular to the surface of 

contact, no matter what the angle of that surface. By contrast, the friction force 

(see fig. 24b) exerted on an object by a surface acts parallel to the surface, in the 

direction that opposes sliding. The pulling force exerted by a stretched rope or cord 

on an object to which it’s attached is called a tension force (see fig. 24c). When 

you tug on your dog’s leash, the force that pulls on her collar is a tension force. 

In addition to contact forces, there are long-range forces that act even when 

the bodies are separated by empty space. The force between two magnets is an 

example of a long-range force, as is the force of gravity (see fig. 24d); the earth 

pulls a dropped object toward it even though there is no direct contact between the 

object and the earth. The gravitational force that the earth exerts on your body is 

called your weight. 
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Figure 24 - Four types of forces 

 

To describe a force vector , we need to describe the direction in which it acts 

as well as its magnitude, the quantity that describes “how much” or “how hard” the 

force pushes or pulls. The SI unit of the magnitude of force is the newton, 

abbreviated N. Table 2 lists some typical force magnitudes. 
 

Table 2 – Typical force magnitudes 

Force Magnitude 

Sun’s gravitational force on the earth            

Thrust of a space shuttle during launch           

Weight of a large blue whale           

Maximum pulling force of a locomotive           

Weight of a 250-lb linebacker           

Weight of a medium apple 1 N     

Weight of smallest insect eggs          

Electric attraction between the proton and the electron in a 

hydrogen atom 
           

Weight of a very small bacterium           

Weight of a hydrogen atom             

Weight of an electron             

Gravitational attraction between the proton and the electron in 

a hydrogen atom 
            

 

A common instrument for measuring force magnitudes is the spring balance. 

It consists of a coil spring enclosed in a case with a pointer attached to one end. 
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When forces are applied to the ends of the spring, it stretches by an amount that 

depends on the force. We can make a scale for the pointer by using a number of 

identical bodies with weights of exactly 1 N each. When one, two, or more of these 

are suspended simultaneously from the balance, the total force stretching the spring 

is 1 N, 2 N, and so on, and we can label the corresponding positions of the pointer 

1 N, 2 N, and so on. Then we can use this instrument to measure the magnitude of 

an unknown force. We can also make a similar instrument that measures pushes 

instead of pulls. 

Figure 25 shows a spring balance being used to measure a pull or push that 

we apply to a box. In each case we draw a vector to represent the applied force. 

The length of the vector shows the magnitude; the longer the vector, the greater the 

force magnitude. 

 

 
Figure 25 – Using a vector arrow to denote the force we exert when (a) pulling a 

block with a string or (b) pushing a block with a stick 

 

When you throw a ball, there are at least two forces acting on it: the push of 

your hand and the downward pull of gravity. Experiment shows that when two 

forces     and     act at the same time at the same point on a body (see fig. 26), the 

effect on the body’s motion is the same as if a single force    were acting equal to 
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the vector sum of the original forces:           . More generally, any number of 

forces applied at a point on a body have the same effect as a single force equal to 

the vector sum of the forces. This important principle is called superposition of 

forces. 

 

 
Figure 26 – Superposition of forces 

 

The principle of superposition of forces is of the utmost importance, and we 

will use it throughout our study of physics. For example, in Fig. 27a, force    acts 

on a body at point O. The component vectors of    in the directions Ox and Oy are 

   and   . When    and    are applied simultaneously, as in Fig. 27b, the effect is 

exactly the same as the effect of the original force   . Hence any force can be 

replaced by its component vectors, acting at the same point.  

 

 
Figure 27 – The force   , which acts at an angle θ from x-axis, may be replaced by 

its rectangular component vectors     and     
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It’s frequently more convenient to describe a force    in terms of its x- and y-

components    and    rather than by its component vectors (recall that component 

vectors are vectors, but components are just numbers). For the case shown in Fig. 

27, both    and    are positive; for other orientations of the force   , either    or    

may be negative or zero. 

Our coordinate axes don’t have to be vertical and horizontal. Figure 28 

shows a crate being pulled up a ramp by a force   , represented by its components 

   and    parallel and perpendicular to the sloping surface of the ramp. 

In Fig. 28 we draw a wiggly line through the force vector    to show that we 

have replaced it by its x- and y-components. Otherwise, the diagram would include 

the same force twice. We will draw such a wiggly line in any force diagram where 

a force is replaced by its components. Look for this wiggly line in other figures in 

this and subsequent chapters. 

 

 
Figure 28 -    and    are the components of    parallel and perpendicular to 

the sloping surface of the inclined plane 

 

We will often need to find the vector sum (resultant) of all the forces acting 

on body. We call this the net force acting on the body. We will use the Greek letter 

(capital sigma, equivalent to the Roman S) as a shorthand notation for a sum. If the 

forces are labeled    ,    ,    , and so on, we abbreviate the sum as 

 

                     (41) 
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We read     as “the vector sum of the forces” or “the net force.” The 

component version of Eq. (41) is the pair of component equations 

 

                
(42) 

 

Here      is the sum of the x-components and      is the sum of the y-

components (see fig. 29). Each component may be positive or negative, so be 

careful with signs when you evaluate these sums. 

 

 
Figure 29 – Finding the components of the vector sum (resultant)    of two forces 

    and     

 

Once we have    and    we can find the magnitude and direction of the net 

force         acting on the body. The magnitude is 

 

     
    

  
(43) 
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and the angle θ between    and the +x-axis can be found from the relationship 

     
  

  
. The components    and    may be positive, negative, or zero, and the 

angle   may be in any of the four quadrants. 

In three-dimensional problems, forces may also have z-components; then we 

add the equation         to Eq. (42). The magnitude of the net force is then 

 

     
    

    
  

(44) 

 

1.2.2 Newton’s first law 

 

How do the forces that act on a body affect its motion? To begin to answer 

this question, let’s first consider what happens when the net force on a body is 

zero. You would almost certainly agree that if a body is at rest, and if no net force 

acts on it (that is, no net push or pull), that body will remain at rest. But what if 

there is zero net force acting on a body in motion? 

To see what happens in this case, suppose you slide a hockey puck along a 

horizontal tabletop, applying a horizontal force to it with your hand (see fig. 30a). 

After you stop pushing, the puck does not continue to move indefinitely; it slows 

down and stops. To keep it moving, you have to keep pushing (that is, applying a 

force). You might come to the “common sense” conclusion that bodies in motion 

naturally come to rest and that a force is required to sustain motion. 

But now imagine pushing the puck across a smooth surface of ice (see fig. 

30b). After you quit pushing, the puck will slide a lot farther before it stops. Put it 

on an air-hockey table, where it floats on a thin cushion of air, and it moves still 

farther (see fig. 30c). In each case, what slows the puck down is friction, an 

interaction between the lower surface of the puck and the surface on which it 

slides. Each surface exerts a frictional force on the puck that resists the puck’s 

motion; the difference in the three cases is the magnitude of the frictional force. 

The ice exerts less friction than the tabletop, so the puck travels farther. The gas 

molecules of the air-hockey table exert the least friction of all. If we could 

eliminate friction completely, the puck would never slow down, and we would 

need no force at all to keep the puck moving once it had been started. Thus the 

“common sense” idea that a force is required to sustain motion is incorrect. 

Experiments like the ones we’ve just described show that when no net force 

acts on a body, the body either remains at rest or moves with constant velocity in a 

straight line. Once a body has been set in motion, no net force is needed to keep it 

moving. We call this observation Newton’s first law of motion: 

Newton’s first law of motion: A body acted on by no net force moves with 

constant velocity (which may be zero) and zero acceleration. 
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Figure 30 – The slicker the surface, the father a puck slides after being given an 

initial velocity. On an air-hockey table (c) the friction force is practically zero, so 

the puck continues with almost constant velocity 

 

 

The tendency of a body to keep moving once it is set in motion results from 

a property called inertia. You use inertia when you try to get ketchup out of a 

bottle by shaking it. First you start the bottle (and the ketchup inside) moving 

forward; when you jerk the bottle back, the ketchup tends to keep moving forward 

and, you hope, ends up on your burger. The tendency of a body at rest to remain at 

rest is also due to inertia. You may have seen a tablecloth yanked out from under 

the china without breaking anything. The force on the china isn’t great enough to 

make it move appreciably during the short time it takes to pull the tablecloth away. 
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It’s important to note that the net force is what matters in Newton’s first law. 

For example, a physics book at rest on a horizontal tabletop has two forces acting 

on it: an upward supporting force, or normal force, exerted by the tabletop (see Fig. 

24a) and the downward force of the earth’s gravitational attraction (a long-range 

force that acts even if the tabletop is elevated above the ground; see Fig. 24d). The 

upward push of the surface is just as great as the downward pull of gravity, so the 

net force acting on the book (that is, the vector sum of the two forces) is zero. In 

agreement with Newton’s first law, if the book is at rest on the tabletop, it remains 

at rest. The same principle applies to a hockey puck sliding on a horizontal, 

frictionless surface: The vector sum of the upward push of the surface and the 

downward pull of gravity is zero. Once the puck is in motion, it continues to move 

with constant velocity because the net force acting on it is zero. 

Here’s another example. Suppose a hockey puck rests on a horizontal 

surface with negligible friction, such as an air-hockey table or a slab of wet ice. If 

the puck is initially at rest and a single horizontal force     acts on it (see fig. 31a), 

the puck starts to move. If the puck is in motion to begin with, the force changes its 

speed, its direction, or both, depending on the direction of the force. In this case the 

net force is equal to    , which is not zero. (There are also two vertical forces: the 

earth’s gravitational attraction and the upward normal force exerted by the surface. 

But as we mentioned earlier, these two forces cancel.) 

Now suppose we apply a second force     (see fig. 31b), equal in magnitude 

to     but opposite in direction. The two forces are negatives of each other,        , 

and their vector sum is zero: 

 

                         
(45) 

 

Again, we find that if the body is at rest at the start, it remains at rest; if it is 

initially moving, it continues to move in the same direction with constant speed. 

These results show that in Newton’s first law, zero net force is equivalent to no 

force at all. This is just the principle of superposition of forces. 

When a body is either at rest or moving with constant velocity (in a straight 

line with constant speed), we say that the body is in equilibrium. For a body to be 

in equilibrium, it must be acted on by no forces, or by several forces such that their 

vector sum—that is, the net force—is zero: 

 

      
(46) 

 

For this to be true, each component of the net force must be zero, so 

 

            
(47) 
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We are assuming that the body can be represented adequately as a point particle. 

When the body has finite size, we also have to consider where on the body the 

forces are applied. 

 

 
Figure 31 – (a) A hockey puck accelerates in the direction of a net applied force    . 

(b) When the net force is zero, the acceleration is zero, the acceleration is zero, and 

puck is in equilibrium 

 

Early we introduced the concept of frame of reference. This concept is 

central to Newton’s laws of motion. Suppose you are in a bus that is traveling on a 

straight road and speeding up. If you could stand in the aisle on roller skates, you 

would start moving backward relative to the bus as the bus gains speed. If instead 

the bus was slowing to a stop, you would start moving forward down the aisle. In 

either case, it looks as though Newton’s first law is not obeyed; there is no net 

force acting on you, yet your velocity changes. What’s wrong? 

The point is that the bus is accelerating with respect to the earth and is not a 

suitable frame of reference for Newton’s first law. This law is valid in some frames 

of reference and not valid in others. A frame of reference in which Newton’s first 

law is valid is called an inertial frame of reference. The earth is at least 

approximately an inertial frame of reference, but the bus is not. (The earth is not a 

completely inertial frame, owing to the acceleration associated with its rotation and 

its motion around the sun. These effects are quite small. Because Newton’s first 

law is used to define what we mean by an inertial frame of reference, it is 

sometimes called the law of inertia. 

Figure 32 helps us understand what you experience when riding in a vehicle 

that’s accelerating. In Fig. 32a, a vehicle is initially at rest and then begins to 

accelerate to the right. A passenger on roller skates (which nearly eliminate the 
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effects of friction) has virtually no net force acting on her, so she tends to remain at 

rest relative to the inertial frame of the earth. As the vehicle accelerates around her, 

she moves backward relative to the vehicle. In the same way, a passenger in a 

vehicle that is slowing down tends to continue moving with constant velocity 

relative to the earth, and so moves forward relative to the vehicle (see fig. 32b). A 

vehicle is also accelerating if it moves at a constant speed but is turning (see fig. 

32c). In this case a passenger tends to continue moving relative to the earth at 

constant speed in a straight line; relative to the vehicle, the passenger moves to the 

side of the vehicle on the outside of the turn. 

 

 
Figure 32 – Riding in an accelerating vehicle 

 

In each case shown in Fig. 32, an observer in the vehicle’s frame of 

reference might be tempted to conclude that there is a net force acting on the 

passenger, since the passenger’s velocity relative to the vehicle changes in each 

case. This conclusion is simply wrong; the net force on the passenger is indeed 

zero. The vehicle observer’s mistake is in trying to apply Newton’s first law in the 

vehicle’s frame of reference, which is not an inertial frame and in which Newton’s 

first law isn’t valid (see fig. 33). In this book we will use only inertial frames of 

reference. 
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Figure 33 – From the frame of reference of the car, it seems as though a force is 

pushing the crash test dummies forward as the car comes to a sudden stop. But 

there is really no such force: As the car stops, the dummies keep moving forward 

as a consequence of Newton’s first law 

 

We’ve mentioned only one (approximately) inertial frame of reference: the 

earth’s surface. But there are many inertial frames. If we have an inertial frame of 

reference A, in which Newton’s first law is obeyed, then any second frame of 

reference B will also be inertial if it moves relative to A with constant velocity 

     . We can prove this using the relative-velocity relationship 

 

                  (48) 

 

Suppose that P is a body that moves with constant velocity       with respect to an 

inertial frame A. By Newton’s first law the net force on this body is zero. The 

velocity of P relative to another frame B has a different value,             

     . But if the relative velocity of the two frames is constant, then       is 

constant as well. Thus B is also an inertial frame; the velocity of P in this frame is 

constant, and the net force on P is zero, so Newton’s first law is obeyed in B. 

Observers in frames A and B will disagree about the velocity of P, but they will 

agree that P has a constant velocity (zero acceleration) and has zero net force 

acting on it. 

There is no single inertial frame of reference that is preferred over all others 

for formulating Newton’s laws. If one frame is inertial, then every other frame 

moving relative to it with constant velocity is also inertial. Viewed in this light, the 
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state of rest and the state of motion with constant velocity are not very different; 

both occur when the vector sum of forces acting on the body is zero. 

 

1.2.3 Mass and weight. Newton’s second law 

 

Newton’s first law tells us that when a body is acted on by zero net force, it 

moves with constant velocity and zero acceleration. In Fig. 34a, a hockey puck is 

sliding to the right on wet ice. There is negligible friction, so there are no 

horizontal forces acting on the puck; the downward force of gravity and the 

upward normal force exerted by the ice surface sum to zero. So the net force     
acting on the puck is zero, the puck has zero acceleration, and its velocity is 

constant. 

But what happens when the net force is not zero? In Fig. 34b we apply a 

constant horizontal force to a sliding puck in the same direction that the puck is 

moving. Then is constant and in the same horizontal direction as .We find that 

during the time the force is acting, the velocity of the puck changes at a constant 

rate; that is, the puck moves with constant acceleration. The speed of the puck 

increases, so the acceleration    is in the same direction as    and    . 
 

 
Figure 34 – Exploring the relationship between the acceleration of a body and the 

net force acting on the body (in this case, a hockey puck on a frictionless surface) 

 

In Fig. 34c we reverse the direction of the force on the puck so that     acts 

opposite to   . In this case as well, the puck has an acceleration; the puck moves 

more and more slowly to the right. The acceleration    in this case is to the left, in 

the same direction as    . As in the previous case, experiment shows that the 

acceleration is constant if     is constant. 
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We conclude that a net force acting on a body causes the body to accelerate 

in the same direction as the net force. If the magnitude of the net force is constant, 

as in Figs. 34b and 34c, then so is the magnitude of the acceleration. 

These conclusions about net force and acceleration also apply to a body 

moving along a curved path. For example, Fig. 35 shows a hockey puck moving in 

a horizontal circle on an ice surface of negligible friction. A rope is attached to the 

puck and to a stick in the ice, and this rope exerts an inward tension force of 

constant magnitude on the puck. The net force and acceleration are both constant 

in magnitude and directed toward the center of the circle. The speed of the puck is 

constant, so this is uniform circular motion. 

Figure 36a shows another experiment to explore the relationship between 

acceleration and net force. We apply a constant horizontal force to a puck on a 

frictionless horizontal surface with the spring stretched a constant amount. As in 

Figs. 34b and 34c, this horizontal force equals the net force on the puck. If we 

change the magnitude of the net force, the acceleration changes in the same 

proportion. Doubling the net force doubles the acceleration (see fig. 34b), halving 

the net force halves the acceleration (see fig. 34c), and so on. Many such 

experiments show that for any given body, the magnitude of the acceleration is 

directly proportional to the magnitude of the net force acting on the body. 

 

 
Figure 35 – A top view of a hockey puck in uniform circular motion on a 

frictionless horizontal surface 
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Figure 36 – For a body of a given mass m, the magnitude of the body’s 

acceleration is directly proportional to the magnitude of the acting on the body 

 

Our results mean that for a given body, the ratio of the magnitude       of 

the net force to the magnitude        of the acceleration is constant, regardless of 

the magnitude of the net force. We call this ratio the inertial mass, or simply the 

mass, of the body and denote it by m. That is, 

 

  
     

 
 

(49) 

or  

         
(50) 

or 

  
     

 
 

(51) 

 

Mass is a quantitative measure of inertia. The last of the equations in Eqs. (51) says 

that the greater its mass, the more a body “resists” being accelerated. When you 

hold a piece of fruit in your hand at the supermarket and move it slightly up and 

down to estimate its heft, you’re applying a force and seeing how much the fruit 

accelerates up and down in response. If a force causes a large acceleration, the fruit 

has a small mass; if the same force causes only a small acceleration, the fruit has a 

large mass. In the same way, if you hit a table-tennis ball and then a basketball 

with the same force, the basketball has much smaller acceleration because it has 

much greater mass. 
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The SI unit of mass is the kilogram. The kilogram is officially defined to be 

the mass of a cylinder of platinum–iridium alloy kept in a vault near Paris. We can 

use this standard kilogram, along with Eqs. (51), to define the newton: 

One newton is the amount of net force that gives an acceleration of 1 meter per 

second squared to a body with a mass of 1 kilogram. 

 

This definition allows us to calibrate the spring balances and other instruments 

used to measure forces. Because of the way we have defined the newton, it is 

related to the units of mass, length, and time. For Eqs. (51) to be dimensionally 

consistent, it must be true that 

 

                                                  
or 

              

 

We will use this relationship many times in the next few chapters, so keep it in 

mind.  
We can also use Eqs. (51) to compare a mass with the standard mass and 

thus to measure masses. Suppose we apply a constant net force     to a body 

having a known mass    and we find an acceleration of magnitude    (see fig. 

37a). We then apply the same force to another body having an unknown mass    

and we find an acceleration of magnitude    (see fig. 37b). Then, according to Eqs. 

(51), 

 

          (52) 

 
  

  
 
  
  

 
(53) 

 

For the same net force, the ratio of the masses of two bodies is the inverse of the 

ratio of their accelerations. In principle we could use Eq. (52) to measure an 

unknown mass    but it is usually easier to determine mass indirectly by 

measuring the body’s weight. 

When two bodies with masses    and    are fastened together, we find that 

the mass of the composite body is always       (see fig. 37c). This additive 

property of mass may seem obvious, but it has to be verified experimentally. 

Ultimately, the mass of a body is related to the number of protons, electrons, and 

neutrons it contains. This wouldn’t be a good way to define mass because there is 

no practical way to count these particles. But the concept of mass is the most 

fundamental way to characterize the quantity of matter in a body. 
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Figure 37 – For a given net force     acting on a body, the acceleration is 

inversely proportional to the mass of the body 

 

We’ve been careful to state that the net force on a body is what causes that 

body to accelerate. Experiment shows that if a combination of forces             and 

so on is applied to a body, the body will have the same acceleration (magnitude 

and direction) as when only a single force is applied, if that single force is equal to 

the vector sum                . In other words, the principle of superposition of 
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forces (see Fig. 26) also holds true when the net force is not zero and the body is 

accelerating. 

Equations (51) relate the magnitude of the net force on a body to the 

magnitude of the acceleration that it produces. We have also seen that the direction 

of the net force is the same as the direction of the acceleration, whether the body’s 

path is straight or curved. Newton wrapped up all these relationships and 

experimental results in a single concise statement that we now call Newton’s 

second law of motion: 

Newton’s second law of motion: If a net external force acts on a body, the 

body accelerates. The direction of acceleration is the same as the direction of the 

net force. The mass of the body times the acceleration of the body equals the net 

force vector. 

In symbols, 

 

        (54) 

 

An alternative statement is that the acceleration of a body is in the same 

direction as the net force acting on the body, and is equal to the net force divided 

by the body’s mass: 

 

   
   

 
 

(55) 

 

Newton’s second law is a fundamental law of nature, the basic relationship 

between force and motion. Most of the remainder of this chapter and all of the next 

are devoted to learning how to apply this principle in various situations. 

Equation (54) has many practical applications (see fig. 38). You’ve actually 

been using it all your life to measure your body’s acceleration. In your inner ear, 

microscopic hair cells sense the magnitude and direction of the force that they must 

exert to cause small membranes to accelerate along with the rest of your body. By 

Newton’s second law, the acceleration of the membranes—and hence that of your 

body as a whole—is proportional to this force and has the same direction. In this 

way, you can sense the magnitude and direction of your acceleration even with 

your eyes closed! 

There are at least four aspects of Newton’s second law that deserve special 

attention. First, Eq. (54) is a vector equation. Usually we will use it in component 

form, with a separate equation for each component of force and the corresponding 

component of acceleration: 

 

                          
(56) 
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This set of component equations is equivalent to the single vector equation (54). 

Each component of the net force equals the mass times the corresponding 

component of acceleration. 

 

 
Figure 38 – The design of high-perfomance motorcycles depends fundamentally on 

Newton’s second law. To maximize the forward acceleration, the designer makes 

the motorcycle as light as possible (that is, minimizes the mass) and uses the most 

powerful engine possible (thus maximizing the forward force) 

 

Second, the statement of Newton’s second law refers to external forces. By 

this we mean forces exerted on the body by other bodies in its environment. It’s 

impossible for a body to affect its own motion by exerting a force on itself; if it 

were possible, you could lift yourself to the ceiling by pulling up on your belt! 

That’s why only external forces are included in the sum     in Eqs. (54) and (56). 

Third, Eqs. (54) and (56) are valid only when the mass m is constant. It’s 

easy to think of systems whose masses change, such as a leaking tank truck, a 

rocket ship, or a moving railroad car being loaded with coal. But such systems are 

better handled by using the concept of momentum. 

Finally, Newton’s second law is valid only in inertial frames of reference, 

just like the first law. Thus it is not valid in the reference frame of any of the 

accelerating vehicles in Fig. 32; relative to any of these frames, the passenger 

accelerates even though the net force on the passenger is zero. We will usually 

assume that the earth is an adequate approximation to an inertial frame, although 

because of its rotation and orbital motion it is not precisely inertial. 

One of the most familiar forces is the weight of a body, which is the 

gravitational force that the earth exerts on the body. (If you are on another planet, 

your weight is the gravitational force that planet exerts on you.) Unfortunately, the 

terms mass and weight are often misused and interchanged in everyday 
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conversation. It is absolutely essential for you to understand clearly the distinctions 

between these two physical quantities. 

Mass characterizes the inertial properties of a body. Mass is what keeps the 

china on the table when you yank the tablecloth out from under it. The greater the 

mass, the greater the force needed to cause a given acceleration; this is reflected in 

Newton’s second law,        . 
Weight, on the other hand, is a force exerted on a body by the pull of the 

earth. Mass and weight are related: Bodies having large mass also have large 

weight. A large stone is hard to throw because of its large mass, and hard to lift off 

the ground because of its large weight. 

 

 
Figure 39 – The relationship of mass and weight 

 

To understand the relationship between mass and weight, note that a freely 

falling body has an acceleration of magnitude g. Newton’s second law tells us that 

a force must act to produce this acceleration. If a 1-kg body falls with an 

acceleration of          the required force has magnitude 

 

               
 

  
         

 

  
       

 

The force that makes the body accelerate downward is its weight. Any body 

near the surface of the earth that has a mass of 1 kg must have a weight of 9.8 N to 

give it the acceleration we observe when it is in free fall. More generally, a body 

with mass m must have weight with magnitude w given by 
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     (57) 

 

Hence the magnitude w of a body’s weight is directly proportional to its 

mass m. The weight of a body is a force, a vector quantity, and we can write Eq. 

(57) as a vector equation (see fig. 39): 

 

         (58) 

 

Remember that g is the magnitude of   , the acceleration due to gravity, so g is 

always a positive number, by definition. Thus w, given by Eq. (57), is the 

magnitude of the weight and is also always positive. 

 

1.2.4. Newton’s third law 

 

A force acting on a body is always the result of its interaction with another 

body, so forces always come in pairs. You can’t pull on a doorknob without the 

doorknob pulling back on you. When you kick a football, the forward force that 

your foot exerts on the ball launches it into its trajectory, but you also feel the force 

the ball exerts back on your foot. If you kick a boulder, the pain you feel is due to 

the force that the boulder exerts on your foot. 

In each of these cases, the force that you exert on the other body is in the 

opposite direction to the force that body exerts on you. Experiments show that 

whenever two bodies interact, the two forces that they exert on each other are 

always equal in magnitude and opposite in direction. This fact is called Newton’s 

third law of motion: 

Newton’s third law of motion: If body A exerts a force on body B (an 

“action”), then body B exerts a force on body A (a “reaction”). These two 

forces have the same magnitude but are opposite in direction. These two 

forces act on different bodies. 

For example, in Fig. 40          is the force applied by body A (first 

subscript) on body B (second subscript), and          is the force applied by body B 

(first subscript) on body A (second subscript). The mathematical statement of 

Newton’s third law is  

 

                   (59) 

 

It doesn’t matter whether one body is inanimate (like the soccer ball in Fig. 40) and 

the other is not (like the kicker): They necessarily exert forces on each other that 

obey Eq. (59). 

In the statement of Newton’s third law, “action” and “reaction” are the two 

opposite forces (in Fig. 40,          and         ); we sometimes refer to them as an 

action–reaction pair. This is not meant to imply any cause-and-effect 

relationship; we can consider either force as the “action” and the other as the 
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“reaction.” We often say simply that the forces are “equal and opposite,” meaning 

that they have equal magnitudes and opposite directions. 

 

 

 
Figure 40 – If body A exerts a force          on body B, then body B exerts a 

force          on body A that equal in magnitude and opposite in direction: 

                   

 

In Fig. 40 the action and reaction forces are contact forces that are present 

only when the two bodies are touching. But Newton’s third law also applies to 

longrange forces that do not require physical contact, such as the force of 

gravitational attraction. Atable-tennis ball exerts an upward gravitational force on 

the earth that’s equal in magnitude to the downward gravitational force the earth 

exerts on the ball. When you drop the ball, both the ball and the earth accelerate 

toward each other. The net force on each body has the same magnitude, but the 

earth’s acceleration is microscopically small because its mass is so great. 

Nevertheless, it does move! 

Abody that has pulling forces applied at its ends, such as the rope in Fig. 41, 

is said to be in tension. The tension at any point is the magnitude of force acting at 

that point (see Fig. 24c). In Fig. 41b the tension at the right end of the rope is the 

magnitude of          (or of         ), and the tension at the left end equals the 

magnitude          of (or of         ). If the rope is in equilibrium and if no forces 

act except at its ends, the tension is the same at both ends and throughout the rope. 

Thus, if the magnitudes of          and          are 50 N each, the tension in the 

rope is 50 N (not 100 N). The total force vector                   acting on 

the rope in this case is zero! 

We emphasize once more a fundamental truth: The two forces in an action–

reaction pair never act on the same body. Remembering this simple fact can often 

help you avoid confusion about action–reaction pairs and Newton’s third law. 
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Figure 41 – Identifying the forces that act when a mason pulls on a rope attached to 

a block 

 

1.2.5 Dynamics of circular motion 

 

When a particle moves in a circular path with constant speed, the particle’s 

acceleration is always directed toward the center of the circle (perpendicular to the 

instantaneous velocity). The magnitude      of the acceleration is constant and is 

given in terms of the speed   and the radius R of the circle by 

 

     
  

 
 

(60) 

 



53 
 

The subscript “rad” is a reminder that at each point the acceleration is radially 

inward toward the center of the circle, perpendicular to the instantaneous velocity. 

This acceleration is often called centripetal acceleration. 

We can also express the centripetal acceleration in terms of the period T, the 

time for one revolution: 

 

  
   

 
 

(61) 

 

In terms of the period,      is 

 

     
    

  
 

(62) 

 

Uniform circular motion, like all other motion of a particle, is governed by 

Newton’s second law. To make the particle accelerate toward the center of the 

circle, the net force     on the particle must always be directed toward the center 

(see fig. 42). The magnitude of the acceleration is constant, so the magnitude      
of the net force must also be constant. If the inward net force stops acting, the 

particle flies off in a straight line tangent to the circle (see fig. 43). 

 

 
Figure 42 – Net force, acceleration and velocity in uniform circular motion 
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Figure 43 – What happens if the inward radial force suddenly ceases to act on a 

body in circular motion? 

 

The magnitude of the radial acceleration is given by      
  

 
 so the 

magnitude      of the net force on a particle with mass m in uniform circular 

motion must be 

 

            
  

 
 

(63) 

 

Uniform circular motion can result from any combination of forces, just so the net 

force     is always directed toward the center of the circle and has a constant 

magnitude. Note that the body need not move around a complete circle: Equation 

(63) is valid for any path that can be regarded as part of a circular arc. 
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1.2.6 The fundamental forces of nature 

 

We have discussed several kinds of forces—including weight, tension, 

friction, fluid resistance, and the normal force—and we will encounter others as we 

continue our study of physics. But just how many kinds of forces are there? Our 

current understanding is that all forces are expressions of just four distinct classes 

of fundamental forces, or interactions between particles (see fig. 44). Two are 

familiar in everyday experience. The other two involve interactions between 

subatomic particles that we cannot observe with the unaided senses. 

Gravitational interactions include the familiar force of your weight, which 

results from the earth’s gravitational attraction acting on you. The mutual 

gravitational attraction of various parts of the earth for each other holds our planet 

together (see fig. 44a). Newton recognized that the sun’s gravitational attraction for 

the earth keeps the earth in its nearly circular orbit around the sun. Next we will 

study gravitational interactions in greater detail, and we will analyze their vital role 

in the motions of planets and satellites. 

The second familiar class of forces, electromagnetic interactions, includes 

electric and magnetic forces. If you run a comb through your hair, the comb ends 

up with an electric charge; you can use the electric force exerted by this charge to 

pick up bits of paper. All atoms contain positive and negative electric charge, so 

atoms and molecules can exert electric forces on one another (see fig. 44b). 

Contact forces, including the normal force, friction, and fluid resistance, are the 

combination of all such forces exerted on the atoms of a body by atoms in its 

surroundings. Magnetic forces, such as those between magnets or between a 

magnet and a piece of iron, are actually the result of electric charges in motion. For 

example, an electromagnet causes magnetic interactions because electric charges 

move through its wires. We will study electromagnetic interactions in detail in the 

second half of this book. 

On the atomic or molecular scale, gravitational forces play no role because 

electric forces are enormously stronger: The electrical repulsion between two 

protons is stronger than their gravitational attraction by a factor of about But in 

bodies of astronomical size, positive and negative charges are usually present in 

nearly equal amounts, and the resulting electrical interactions nearly cancel out. 

Gravitational interactions are thus the dominant influence in the motion of planets 

and in the internal structure of stars. 

The other two classes of interactions are less familiar. One, the strong 

interaction, is responsible for holding the nucleus of an atom together. Nuclei 

contain electrically neutral neutrons and positively charged protons. The electric 

force between charged protons tries to push them apart; the strong attractive force 

between nuclear particles counteracts this repulsion and makes the nucleus stable. 

In this context the strong interaction is also called the strong nuclear force. It has 

much shorter range than electrical interactions, but within its range it is much 

stronger. The strong interaction plays a key role in thermonuclear reactions that 

take place at the sun’s core and generate the sun’s heat and light (see fig. 44c). 
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Figure 44 – Examples of fundamental interactions in nature: (a) The moon and the earth 

are held together and held in orbit by gravitational force; (b) This molecule of bacterial 

plasmid DNA is held together be electromagnetic forces between its atoms; (c) The sun 

shine because in its core, strong forces between nuclear particles cause the release of 

energy; (d) When a massive star explodes into a supernova, a flood of energy is released 

by weak interactions between the star’s nuclear particles 

 

Finally, there is the weak interaction. Its range is so short that it plays a role 

only on the scale of the nucleus or smaller. The weak interaction is responsible for 

a common form of radioactivity called beta decay, in which a neutron in a 

radioactive nucleus is transformed into a proton while ejecting an electron and a 

nearly massless particle called an antineutrino. The weak interaction between the 

antineutrino and ordinary matter is so feeble that an antineutrino could easily 

penetrate a wall of lead a million kilometers thick! Yet when a giant star undergoes 

a cataclysmic explosion called a supernova, most of the energy is released by way 

of the weak interaction (see fig. 44d). 

In the 1960s physicists developed a theory that described the 

electromagnetic and weak interactions as aspects of a single electroweak 

interaction. This theory has passed every experimental test to which it has been 

put. Encouraged by this success, physicists have made similar attempts to describe 

the strong, electromagnetic, and weak interactions in terms of a single grand 

unified theory (GUT), and have taken steps toward a possible unification of all 

interactions into a theory of everything (TOE). Such theories are still speculative, 
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and there are many unanswered questions in this very active field of current 

research. 

 

1.3 Work, kinetic and potential energy 

 

1.3.1 Work 

 

You’d probably agree that it’s hard work to pull a heavy sofa across the 

room, to lift a stack of encyclopedias from the floor to a high shelf, or to push a 

stalled car off the road. Indeed, all of these examples agree with the everyday 

meaning of work—any activity that requires muscular or mental effort. 

In physics, work has a much more precise definition. By making use of this 

definition we’ll find that in any motion, no matter how complicated, the total work 

done on a particle by all forces that act on it equals the change in its kinetic 

energy—a quantity that’s related to the particle’s speed. This relationship holds 

even when the forces acting on the particle aren’t constant, a situation that can be 

difficult or impossible to handle with the techniques you learned in Chapters 4 and 

5. The ideas of work and kinetic energy enable us to solve problems in mechanics 

that we could not have attempted before. 

In this section we’ll see how work is defined and how to calculate work in 

avariety of situations involving constant forces. Even though we already know 

how to solve problems in which the forces are constant, the idea of work is still 

useful in such problems. Later in this chapter we’ll relate work and kinetic energy, 

and then apply these ideas to problems in which the forces are not constant. 

The three examples of work described above—pulling a sofa, lifting 

encyclopedias, and pushing a car—have something in common. In each case you 

do work by exerting a force on a body while that body moves from one place to 

another—that is, undergoes a displacement (see fig. 45). You do more work if the 

force is greater (you push harder on the car) or if the displacement is greater (you 

push the car farther down the road). 

 

 
Figure 45 – These people are doing work as they push on the stalled car because 

they exert a force on the car as it moves 
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The physicist’s definition of work is based on these observations. Consider a 

body that undergoes a displacement of magnitude s along a straight line. (For now, 

we’ll assume that any body we discuss can be treated as a particle so that we can 

ignore any rotation or changes in shape of the body.) While the body moves, a 

constant force    acts on it in the same direction as the displacement (see fig. 46). 

We define the work W done by this constant force under these circumstances as 

the product of the force magnitude F and the displacement magnitude s: 

 

     (64) 

 

The work done on the body is greater if either the force F or the 

displacement s is greater, in agreement with our observations above. 

 

 
Figure 46 – The work done be a constant force acting in the same direction as the 

displacement 

 

The SI unit of work is the joule (abbreviated J, pronounced “jool,” and 

named in honor of the 19th-century English physicist James Prescott Joule). From 

Eq. (64) we see that in any system of units, the unit of work is the unit of force 

multiplied by the unit of distance. In SI units the unit of force is the newton and the 

unit of distance is the meter, so 1 joule is equivalent to 1 newton-meter      : 
 

                                        
 

As an illustration of Eq. (64), think of a person pushing a stalled car. If he 

pushes the car through a displacement with a constant force    in the direction of 
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motion, the amount of work he does on the car is given by Eq. (64):      . But 

what if the person pushes at an angle   to the car’s displacement (see fig. 47)? 

 

 
Figure 47 – The work done by a constant force acting at an angle to the 

displacement 

 

Then    has a component          in the direction of the displacement and a 

component          that acts perpendicular to the displacement. (Other forces 

must act on the car so that it moves along   , not in the direction of   . We’re 

interested only in the work that the person does, however, so we’ll consider only 

the force he exerts.) In this case only the parallel component    is effective in 

moving the car, so we define the work as the product of this force component and 

the magnitude of the displacement. Hence               , or 

 

         (65) 

 

We are assuming that F and    are constant during the displacement. If    , so 

that    and    are in the same direction, then        and we are back to Eq. (64). 

Equation (65) has the form of the scalar product of two vectors: You may 

want to review that definition. Hence we can write Eq. (65) more compactly as 

 

       (66) 

 

In Example 64 the work done in pushing the cars was positive. But it’s 

important to understand that work can also be negative or zero. This is the essential 

way in which work as defined in physics differs from the “everyday” definition of 

work. When the force has a component in the same direction as the displacement 

(  between zero and    ),      in Eq. (65) is positive and the work W is positive 

(see fig. 48a). When the force has a component opposite to the displacement (  

between     and     ),      is negative and the work is negative (see fig. 48b). 

When the force is perpendicular to the displacement,       and the work done 

by the force is zero (see fig. 48c). The cases of zero work and negative work bear 

closer examination, so let’s look at some examples. 
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Figure 48 – A constant force    can do positive, negative, or zero work depending 

on the angle between    and displacement    
 

There are many situations in which forces act but do zero work. You might 

think it’s “hard work” to hold a barbell motionless in the air for 5 minutes (see fig. 

49). But in fact, you aren’t doing any work at all on the barbell because there is no 

displacement. 

 

 
Figure 49 – A weightlifter does no work on a barbell as long as he holds in 

stationary 

 

You get tired because the components of muscle fibers in your arm do work 

as they continually contract and relax. This is work done by one part of the arm 

exerting force on another part, however, not on the barbell. Even when you walk 

with constant velocity on a level floor while carrying a book, you still do no work 

on it. The book has a displacement, but the (vertical) supporting force that you 

exert on the book has no component in the direction of the (horizontal) motion. 

Then       in Eq. (65), and       . When a body slides along a surface, the 

work done on the body by the normal force is zero; and when a ball on a string 

moves in uniform circular motion, the work done on the ball by the tension in the 
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string is also zero. In both cases the work is zero because the force has no 

component in the direction of motion. 

What does it really mean to do negative work? The answer comes from 

Newton’s third law of motion. When a weightlifter lowers a barbell as in Fig. 50a, 

his hands and the barbell move together with the same displacement The barbell 

exerts a force on his hands in the same direction as the hands’ displacement, so the 

work done by the barbell on his hands is positive (see fig. 50b). But by Newton’s 

third law the weightlifter’s hands exert an equal and opposite force 

                                      on the barbell (see fig. 50c). This force, 

which keeps the barbell from crashing to the floor, acts opposite to the barbell’s 

displacement. Thus the work done by his hands on the barbell is negative. Because 

the weightlifter’s hands and the barbell have the same displacement, the work that 

his hands do on the barbell is just the negative of the work that the barbell does on 

his hands. In general, when one body does negative work on a second body, the 

second body does an equal amount of positive work on the first body. 

 

 
Figure 50 – This weightlifter’s hands do negative work on a barbell as the barbell 

does work on his hands 

 

How do we calculate work when several forces act on a body? One way is to 

use Eq. (65) or (66) to compute the work done by each separate force. Then, 

because work is a scalar quantity, the total work      done on the body by all the 

forces is the algebraic sum of the quantities of work done by the individual forces. 

An alternative way to find the total work      is to compute the vector sum of the 

forces (that is, the net force) and then use this vector sum as    in Eq. (65) or (66). 

The following example illustrates both of these techniques. 

 

1.3.2 Kinetic energy and the work–energy theorem 

 

The total work done on a body by external forces is related to the body’s 

displacement––that is, to changes in its position. But the total work is also related 

to changes in the speed of the body. To see this, consider Fig. 51, which shows 

three examples of a block sliding on a frictionless table. The forces acting on the 
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block are its weight     , the normal force    , and the force    exerted on it by the 

hand. 

In Fig. 51a the net force on the block is in the direction of its motion. From 

Newton’s second law, this means that the block speeds up; from Eq. (64), this also 

means that the total work done on the block is positive. The total work is negative 

in Fig. 51b because the net force opposes the displacement; in this case the block 

slows down. The net force is zero in Fig. 51c, so the speed of the block stays the 

same and the total work done on the block is zero. We can conclude that when a 

particle undergoes a displacement, it speeds up if       , slows down if 

       and maintains the same speed if       . 

 

 
 

Figure 51 – The relationship between the total work done on a body how the 

body’s speed changes 
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Let’s make these observations more quantitative. Consider a particle with 

mass m moving along the x-axis under the action of a constant net force with 

magnitude F directed along the positive x-axis (see fig. 52). The particle’s 

acceleration is constant and given by Newton’s second law,       . Suppose 

the speed changes from    to    while the particle undergoes a displacement 

        from point    to   . Using a constant-acceleration equation, Eq. (18), 

and replacing     by   ,    by   , and        by s, we have 

 

  
    

       

   
  
    

 

  
 

 

(67) 

(68) 

 

 
Figure 52 – A constant net force    does work on a moving body 

 

When we multiply this equation by m and equate      to the net force F, we find  

 

       
  
    

 

  
 

(69) 

 

and 

 

   
 

 
   

  
 

 
   

  
(70) 

 

The product Fs is the work done by the net force F and thus is equal to the total 

work      done by all the forces acting on the particle. The quantity is 
 

 
    is 

called the kinetic energy K of the particle: 

 

  
 

 
    

(71) 

 

Like work, the kinetic energy of a particle is a scalar quantity; it depends on only 

the particle’s mass and speed, not its direction of motion (see fig. 53). A car 

(viewed as a particle) has the same kinetic energy when going north at 10 m/s as 
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when going east at 10 m/s. Kinetic energy can never be negative, and it is zero 

only when the particle is at rest. 

 

 

Figure 53 – Comparing the kinetic energy   
 

 
    of different bodies 

 

We can now interpret Eq. (70) in terms of work and kinetic energy. The first 

term on the right side of Eq. (70) is    
 

 
   

 , the final kinetic energy of the 

particle (that is, after the displacement). The second term is the initial kinetic 

energy,    
 

 
   

 , and the difference between these terms is the change in 

kinetic energy. So Eq. (70) says: 

The work done by the net force on a particle equals the change in the 

particle’s kinetic energy: 

 

              (72) 

 

This result is the work–energy theorem. 

The work–energy theorem agrees with our observations about the block in 

Fig. 51. When      is positive, the kinetic energy increases (the final kinetic 
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energy    is greater than the initial kinetic energy   ) and the particle is going 

faster at the end of the displacement than at the beginning. When      is negative, 

the kinetic energy decreases (   is less than   ) and the speed is less after the 

displacement. When        the kinetic energy stays the same (     ) and the 

speed is unchanged. Note that the work–energy theorem by itself tells us only 

about changes in speed, not velocity, since the kinetic energy doesn’t depend on 

the direction of motion. 

From Eq. (70) or Eq. (72), kinetic energy and work must have the same 

units. Hence the joule is the SI unit of both work and kinetic energy (and, as we 

will see later, of all kinds of energy). To verify this, note that in SI units the 

quantity   
 

 
    has units           or          we recall that     

          so 

 

                                 
 

Because we used Newton’s laws in deriving the work–energy theorem, we 

can     use this theorem only in an inertial frame of reference. Note also that the 

work–energy theorem is valid in any inertial frame, but the values of      and 

      may differ from one inertial frame to another (because the displacement 

and speed of a body may be different in different frames). 

We’ve derived the work–energy theorem for the special case of straight-line 

motion with constant forces, and in the following examples we’ll apply it to this 

special case only. We’ll find in the next section that the theorem is valid in general, 

even when the forces are not constant and the particle’s trajectory is curved. 

In this section we’ve been careful to apply the work–energy theorem only to 

bodies that we can represent as particles—that is, as moving point masses. New 

subtleties appear for more complex systems that have to be represented as many 

particles with different motions. We can’t go into these subtleties in detail in this 

chapter, but here’s an example. 

Suppose a boy stands on frictionless roller skates on a level surface, facing a 

rigid wall (see fig. 54). He pushes against the wall, which makes him move to the 

right. The forces acting on him are his weight     , the upward normal forces      and 

     exerted by the ground on his skates, and the horizontal force    exerted on him 

by the wall. There is no vertical displacement, so            and      do no work. Force 

   accelerates him to the right, but the parts of his body where that force is applied 

(the boy’s hands) do not move while the force acts. Thus the force    also does no 

work. Where, then, does the boy’s kinetic energy come from? 
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Figure 54 – The external forces acting on a skater pushing off a wall. The work 

done by these forces is zero, but the skater’s kinetic energy changes nonetheless 

 

The explanation is that it’s not adequate to represent the boy as a single point 

mass. Different parts of the boy’s body have different motions; his hands remain 

stationary against the wall while his torso is moving away from the wall. The 

various parts of his body interact with each other, and one part can exert forces and 

do work on another part. Therefore the total kinetic energy of this composite 

system of body parts can change, even though no work is done by forces applied 

by bodies (such as the wall) that are outside the system. We’ll discover that just as 

for the boy in this example, the total kinetic energy of such a system can change 

even when no work is done on any part of the system by anything outside it. 

 

1.3.3 Power 

 

The definition of work makes no reference to the passage of time. If you lift 

a barbell weighing 100 N through a vertical distance of 1.0 m at constant velocity, 

you do (100 N)(1.0 m)=100 J of work whether it takes you 1 second, 1 hour, or 1 

year to do it. But often we need to know how quickly work is done. We describe 

this in terms of power. In ordinary conversation the word “power” is often 

synonymous with “energy” or “force.” In physics we use a much more precise 

definition: Power is the time rate at which work is done. Like work and energy, 

power is a scalar quantity. 

When a quantity of work    is done during a time interval   , the average 

work done per unit time or average power     is defined to be 
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(73) 

 

The rate at which work is done might not be constant. We can define 

instantaneous power P as the quotient in Eq. (73) as    approaches zero: 

 

     
    

  

  
 
  

  
 

(74) 

 

The SI unit of power is the watt (W), named for the English inventor James 

Watt. One watt equals 1 joule per second: 1 W = 1 J/s (see fig. 55). The kilowatt 

(1kW=10
3
 W) and the megawatt (1MW=10

6
 W) are also commonly used. 

 

 

 
Figure 55 – The same amount of work is done in both of these situations, but the 

power (the rate at which work is done) is different 
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The watt is a familiar unit of electrical power; a 100-W light bulb converts 

100 J of electrical energy into light and heat each second. But there’s nothing 

inherently electrical about a watt. A light bulb could be rated in horsepower, and 

an engine can be rated in kilowatts. 

The kilowatt-hour (kW·h) is the usual commercial unit of electrical energy. 

One kilowatt-hour is the total work done in 1 hour (3600 s) when the power is 1 

kilowatt (10
3
 J/s), so 

 

                                          
 

The kilowatt-hour is a unit of work or energy, not power. 

In mechanics we can also express power in terms of force and velocity. 

Suppose that a force    acts on a body while it undergoes a vector displacement    . 

If    is the component of    tangent to the path (parallel to    ), then the work done 

by the force is        . The average power is 

 

    
    

  
   

  

  
       

(75) 

 

Instantaneous power P is the limit of this expression as     : 

 

      (76) 

 

where    is the magnitude of the instantaneous velocity. We can also express Eq. 

(76) in terms of the scalar product: 

 

        (77) 

 

1.3.4 Potential energy 

 

Gravitational Potential Energy. We learned early that a particle gains or 

loses kinetic energy because it interacts with other objects that exert forces on it. 

During any interaction, the change in a particle’s kinetic energy is equal to the total 

work done on the particle by the forces that act on it. 

In many situations it seems as though energy has been stored in a system, to 

be recovered later. For example, you must do work to lift a heavy stone over your 

head. It seems reasonable that in hoisting the stone into the air you are storing 

energy in the system, energy that is later converted into kinetic energy when you 

let the stone fall. 

This example points to the idea of an energy associated with the position of 

bodies in a system. This kind of energy is a measure of the potential or possibility 

for work to be done; when a stone is raised into the air, there is a potential for work 

to be done on it by the gravitational force, but only if the stone is allowed to fall to 
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the ground. For this reason, energy associated with position is called potential 

energy. Our discussion suggests that there is potential energy associated with a 

body’s weight and its height above the ground. We call this gravitational potential 

energy (see fig. 56). 

 

 
Figure 56 – As a basketball descends, gravitational potential energy is 

conserved to kinetic energy and basketball’s speed increases 

 

We now have two ways to describe what happens when a body falls without 

air resistance. One way is to say that gravitational potential energy decreases and 

the falling body’s kinetic energy increases. The other way, is that a falling body’s 

kinetic energy increases because the force of the earth’s gravity (the body’s 

weight) does work on the body. Later in this section we’ll use the work–energy 

theorem to show that these two descriptions are equivalent. 

To begin with, however, let’s derive the expression for gravitational 

potential energy. Suppose a body with mass m moves along the (vertical) y-axis, as 

in Fig. 57. The forces acting on it are its weight, with magnitude and possibly some 

other forces; we call the vector sum (resultant) of all the other forces We’ll assume 

that the body stays close enough to the earth’s surface that the weight is constant. 

We want to find the work done by the weight when the body moves downward 

from a height above the origin to a lower height (see fig. 57a). The weight and 

displacement are in the same direction, so the work       done on the body by its 

weight is positive; 

 

                            (78) 

 

This expression also gives the correct work when the body moves upward and    

is greater than    (see fig. 57b). In that case the quantity         is negative, and 

      is negative because the weight and displacement are opposite in direction. 



70 
 

 

 

 
Figure 57 –When a body moves vertically from an initial height    to a final height 

  , the gravitational force      does work and the gravitational potential energy 

changes 
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Equation (78) shows that we can express       in terms of the values of the 

quantity     at the beginning and end of the displacement. This quantity, the 

product of the weight    and the height   above the origin of coordinates, is 

called the gravitational potential energy,      : 

 

          (79) 

 

Its initial value is             and its final value is            . The 

change in       is the final value minus the initial value,               

       or We can express the work       done by the gravitational force during 

the displacement from    to    as 

 

                                             (80) 

 

The negative sign in front of        is essential. When the body moves up,   

increases, the work done by the gravitational force is negative, and the 

gravitational potential energy increases           . When the body moves 

down, y decreases, the gravitational force does positive work, and the gravitational 

potential energy decreases           . It’s like drawing money out of the bank 

(decreasing ) and spending it (doing positive work). The unit of potential energy is 

the joule (J), the same unit as is used for work. 

Elastic Potential Energy. There are many situations in which we encounter 

potential energy that is not gravitational in nature. One example is a rubber-band 

slingshot. Work is done on the rubber band by the force that stretches it, and that 

work is stored in the rubber band until you let it go. Then the rubber band gives 

kinetic energy to the projectile. 

This is the same pattern we saw with the pile driver: Do work on the system 

to store energy, which can later be converted to kinetic energy. We’ll describe the 

process of storing energy in a deformable body such as a spring or rubber band in 

terms of elastic potential energy (see fig. 58). A body is called elastic if it returns 

to its original shape and size after being deformed. To be specific, we’ll consider 

storing energy in an ideal spring. To keep such an ideal spring stretched by a 

distance x, we must exert a force     , where k is the force constant of the 

spring. The ideal spring is a useful idealization because many elastic bodies show 

this same direct proportionality between force    and displacement x, provided that 

x is sufficiently small. 
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Figure 58 – The Achilles tendon, with runs along the back the back of the ankle to 

the heel bone, acts like a natural spring. When it stretches and then relaxes, this 

tendon stores and then release elastic potential energy. This spring action reduce 

the amount of work your leg muscles must do as you run 

 

Let’s proceed just as we did for gravitational potential energy. We begin 

with the work done by the elastic (spring) force and then combine this with the 

work–energy theorem. The difference is that gravitational potential energy is a 

shared property of a body and the earth, but elastic potential energy is stored just in 

the spring (or other deformable body). 

Figure 59 shows the ideal spring from, with its left end held stationary and 

its right end attached to a block with mass m that can move along the x-axis. In Fig. 

59a the body is at     when the spring is neither stretched nor compressed. We 

move the block to one side, thereby stretching or compressing the spring, and then 

let it go. As the block moves from one position    to another position    how 

much work does the elastic (spring) force do on the block? 
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Figure 59 – Calculating the work done by a spring attached to a block on a 

horizontal surface. The quantity x is the extension to compression of the spring 
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We found early that the work we must do on the spring to move one end 

from an elongation    to a different elongation    is 

 

  
 

 
   

  
 

 
   

  
(81) 

 

where k is the force constant of the spring. If we stretch the spring farther, we do 

positive work on the spring; if we let the spring relax while holding one end, we do 

negative work on it. We also saw that this expression for work is still correct if the 

spring is compressed, not stretched, so that    or    or both are negative. Now we 

need to find the work done by the spring. From Newton’s third law the two 

quantities of work are just negatives of each other. Changing the signs in this 

equation, we find that in a displacement from    to    the spring does an amount 

of work     given by 

 

    
 

 
   

  
 

 
   

  
(82) 

 

The subscript “el” stands for elastic. When    and    are both positive and       

(see fig. 59b), the spring does negative work on the block, which moves in the +x-

direction while the spring pulls on it in the –x-direction. The spring stretches 

farther, and the block slows down. When    and    are both positive and       

(see fig. 59c), the spring does positive work as it relaxes and the block speeds up. 

If the spring can be compressed as well as stretched,    or    or both may be 

negative, but the expression for     is still valid. In Fig. 59d, both    and    are 

negative, but    is less negative than   ; the compressed spring does positive work 

as it relaxes, speeding the block up. 

Just as for gravitational work, we can express the work done by the spring in 

terms of a given quantity at the beginning and end of the displacement. This 

quantity is 
 

 
    and we define it to be the elastic potential energy: 

 

    
 

 
    

(83) 

 

Figure 60 is a graph of Eq. (83). The unit of     is the joule (J), the unit used for all 

energy and work quantities; to see this from Eq. (83), recall that the units of k are 

N/m and that 1 N·m=1 J. 
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Figure 60 – The graph of elastic potential energy for an ideal spring is a parabola: 

    
 

 
   , where   is the extension or compression of the spring. Elastic 

potential energy     is never negative 

 

We can use Eq. (83) to express the     work done on the block by the elastic 

force in terms of the change in elastic potential energy: 

 

    
 

 
   

  
 

 
   

                  
(84) 

 

When a stretched spring is stretched farther, as in Fig. 59b,     is negative and     

increases; a greater amount of elastic potential energy is stored in the spring. When 

a stretched spring relaxes, as in Fig. 59c, x decreases,     is positive, and     

decreases; the spring loses elastic potential energy. Negative values of x refer to a 

compressed spring. But, as Fig. 60 shows,     is positive for both positive and 

negative x, and Eqs. (83) and (84) are valid for both cases. The more a spring is 

compressed or stretched, the greater its elastic potential energy. 

The work–energy theorem says that            no matter what kind of 

forces are acting on a body. If the elastic force is the only force that does work on 

the body, then 

 

                   (85) 

 

The work–energy theorem,           , then gives us 

 

                (86) 
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Here     is given by Eq. (83), so 

 
 

 
   

  
 

 
   

  
 

 
   

  
 

 
   

  
(87) 

 

In this case the total mechanical energy         — the sum of kinetic and 

elastic potential energy—is conserved. An example of this is the motion of the 

block in Fig. 59, provided the horizontal surface is frictionless so that no force 

does work other than that exerted by the spring. 

For Eq. (87) to be strictly correct, the ideal spring that we’ve been discussing 

must also be massless. If the spring has a mass, it also has kinetic energy as the 

coils of the spring move back and forth. We can neglect the kinetic energy of the 

spring if its mass is much less than the mass m of the body attached to the spring. 

For instance, a typical automobile has a mass of 1200 kg or more. The springs in 

its suspension have masses of only a few kilograms, so their mass can be neglected 

if we want to study how a car bounces on its suspension. 

 

1.4 Rotational of rigid body 

 

1.4.1 Angular velocity and acceleration 

 

In analyzing rotational motion, let’s think first about a rigid body that rotates 

about a fixed axis—an axis that is at rest in some inertial frame of reference and 

does not change direction relative to that frame. The rotating rigid body might be a 

motor shaft, a chunk of beef on a barbecue skewer, or a merry-go-round. 

Figure 61 shows a rigid body (in this case, the indicator needle of a 

speedometer) rotating about a fixed axis. The axis passes through point O and 

isperpendicular to the plane of the diagram, which we choose to call the xy-plane. 

One way to describe the rotation of this body would be to choose a particular point 

P on the body and to keep track of the x- and y-coordinates of this point. This isn’t 

a terribly convenient method, since it takes two numbers (the two coordinates x 

and y) to specify the rotational position of the body. Instead, we notice that the line 

OP is fixed in the body and rotates with it. The angle that this line makes with the 

describes the rotational position of the body; we will use this single quantity as a 

coordinate for rotation. 

The angular coordinate   of a rigid body rotating around a fixed axis can be 

positive or negative. If we choose positive angles to be measured counterclockwise 

from the positive x-axis, then the angle   in Fig. 61 is positive. If we instead 

choose the positive rotation direction to be clockwise, then   in Fig. 61 is negative. 

When we considered the motion of a particle along a straight line, it was essential 

to specify the direction of positive displacement along that line; when we discuss 

rotation around a fixed axis, it’s just as essential to specify the direction of positive 

rotation. 
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Figure 61 – A speedometer needle (an example of a rigid body) rotating 

counterclockwise about a fixed axis 

 

To describe rotational motion, the most natural way to measure the angle   

is not in degrees, but in radians. As shown in Fig. 62a, one radian (1 rad) is the 

angle subtended at the center of a circle by an arc with a length equal to the radius 

of the circle. In Fig. 62b an angle   is subtended by an arc of length s on a circle of 

radius r. The value of (in radians) is equal to s divided by r: 

 

  
 

 
 (88) 

or 

     (89) 

 

An angle in radians is the ratio of two lengths, so it is a pure number, without 

dimensions. If         and         then       but we will often write this 

as 1.5 rad to distinguish it from an angle measured in degrees or revolutions. 

The circumference of a circle (that is, the arc length all the way around the 

circle) is    times the radius, so there are    (about 6.283) radians in one complete 

revolution (360  ). Therefore 

 

      
    

  
      

 

Similarly,                
 

 
   , and so on. If we had insisted on measuring 

the angle in degrees, we would have needed to include an extra factor of        

on the right-hand side of      in Eq. (89). By measuring angles in radians, we 
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keep the relationship between angle and distance along an arc as simple as 

possible. 

 

 
Figure 62 – Measuring angels in radians 

 

The coordinate   shown in Fig. 61 specifies the rotational position of a rigid 

body at a given instant. We can describe the rotational motion of such a rigid body 

in terms of the rate of change of  . We’ll do this in an analogous way to our 

description of straight-line motion. In Fig. 63a, a reference line OP in a rotating 

body makes an angle    with the +x-axis at time   . At a later time    the angle has 

changed to   . We define the average angular velocity       (the Greek letter 

omega) of the body in the time interval         as the ratio of the angular 

displacement         to   : 

 

      
     
     

 
  

  
 

(90) 

 

The subscript z indicates that the body in Fig. 63a is rotating about the z-axis, 

which is perpendicular to the plane of the diagram. The instantaneous angular 
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velocity    is the limit of       as    approaches zero—that is, the derivative of   

with respect to t: 

 

      
    

  

  
 
  

  
 

(91) 

 

When we refer simply to “angular velocity,” we mean the instantaneous angular 

velocity, not the average angular velocity. 

The angular velocity    can be positive or negative, depending on the 

direction in which the rigid body is rotating (see fig. 64). The angular speed   is 

the magnitude of angular velocity. Like ordinary (linear) speed   the angular speed 

is never negative. 

 

 
Figure 63 – (a) Angular displacement    of a rotating body. (b) Every part 

of a rotating rigid body has the same average angular velocity       
 

Different points on a rotating rigid body move different distances in a given 

time interval, depending on how far each point lies from the rotation axis. But 

because the body is rigid, all points rotate through the same angle in the same time 

(see fig. 63b). Hence at any instant, every part of a rotating rigid body has the 

same angular velocity. The angular velocity is positive if the body is rotating in the 

direction of increasing   and negative if it is rotating in the direction of decreasing 

 . 

If the angle is in radians, the unit of angular velocity is the radian per second 

(rad/s). Other units, such as the revolution per minute (rev/min or rpm), are often 

used. Since             , two useful conversions are 

 

 
   

 
   

   

 
 

and 
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That is, 1 rad/s is about 10 rpm. 

 

 
Figure 64 – A rigid body’s average angular velocity (shown here) and 

instantaneous angular velocity can be positive or negative 

 

As we have seen, our notation for the angular velocity    about the z-axis is 

reminiscent of the notation    for the ordinary velocity along the x-axis. Just as    

is the x-component of the velocity vector       is the z-component of an angular 

velocity vector      directed along the axis of rotation. As Fig. 65a shows, the 

direction      of is given by the right-hand rule that we used to define the vector 

product. If the rotation is about the z-axis, then      has only  z-component; this 

component is positive if      is along the positive z-axis and negative if      is along 

the negative z-axis (see fig. 65b).  

The vector formulation is especially useful in situations in which the 

direction of the rotation axis changes. In this chapter, however, we’ll consider only 

situations in which the rotation axis is fixed. Hence throughout this chapter we’ll 

use “angular velocity” to refer    to the component of the angular velocity vector 

     along the axis. 
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Figure 65 – (a) The right-hand rule for the direction of the angular velocity vector 

    . Reserving the direction of rotation reverses the direction of     . (b) The sign of 

   for rotation along the z-axis 

 

When the angular velocity of a rigid body changes, it has an angular 

acceleration. When you pedal your bicycle harder to make the wheels turn faster 

or apply the brakes to bring the wheels to a stop, you’re giving the wheels an 

angular acceleration. You also impart an angular acceleration whenever you 

change the rotation speed of a piece of spinning machinery such as an automobile 

engine’s crankshaft. 

If     and     are the instantaneous angular velocities at times    and   , we 

define the average angular acceleration       over the interval          as 

the change in angular velocity divided by    (see fig. 66): 

 

      
       

     
 
  

  
 

(92) 

 

The instantaneous angular acceleration    is the limit of       as     : 

 

      
    

  

  
 
  

  
 

(93) 

 

The usual unit of angular acceleration is the radian per second per second, or 

rad/s
2
. From now on we will use the term “angular acceleration” to mean the 

instantaneous angular acceleration rather than the average angular acceleration. 
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Figure 66 – Calculating the average angular acceleration of a rotating body 

 

Because         , we can also express angular acceleration as the 

second derivative of the angular coordinate: 

 

   
 

  

  

  
 
   

   
 

(94) 

 

You have probably noticed that we are using Greek letters for angular 

kinematic quantities:   for angular position,    for angular velocity, and    for 

angular acceleration. These are analogous to x for position,    for velocity, and    

for acceleration, respectively, in straight-line motion. In each case, velocity is the 

rate of change of position with respect to time and acceleration is the rate of 

change of velocity with respect to time. We will sometimes use the terms “linear 

velocity” and “linear acceleration” for the familiar quantities we defined early to 

distinguish clearly between these and the angular quantities introduced in this 

chapter. 

In rotational motion, if the angular acceleration    is positive, then the 

angular velocity    is increasing; if    is negative, then    is decreasing. The 

rotation is speeding up if    and    have the same sign and slowing down if    and 

   have opposite signs. 

Just as we did for angular velocity, it’s useful to define an angular 

acceleration vector   . Mathematically,    is the time derivative of the angular 

velocity vector     . If the object rotates around the fixed z-axis, then    has only a z-

component; the quantity    is just that component. In this case,    is in the same 
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direction as      if the rotation is speeding up and opposite      to if the rotation is 

slowing down (see fig. 67). 

 

 
Figure 67 – When the rotation axis is fixed, the angular acceleration and angular 

velocity vectors both lie along that axis 

 

1.4.2 Rotation with constant angular acceleration 

 

Early we found that straight-line motion is particularly simple when the 

acceleration is constant. This is also true of rotational motion about a fixed axis. 

When the angular acceleration is constant, we can derive equations for angular 

velocity and angular position using exactly the same procedure that we used for 

straight-line motion. In fact, the equations we are about to derive are identical to 

Eqs. (8), (13), (18), and (19) if we replace x with  ,    with   , and    with   . 

Let     be the angular velocity of a rigid body at time    , and let    be 

its angular velocity at any later time t. The angular acceleration    is constant and 

equal to the average value for any interval. Using Eq. (92) with the interval from 0 

to t, we find 

 

   
      

   
 

(95) 

or 

           (96) 

 

The product     is the total change in    between     and the later time t; the 

angular velocity    at time t is the sum of the initial value     and this total 

change. 
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With constant angular acceleration, the angular velocity changes at a 

uniform rate, so its average value between 0 and t is the average of the initial and 

final values: 

 

      
      

 
 

(97) 

 

We also know that       is the total angular displacement        divided by the 

time interval       
 

      
    
   

 
(98) 

 

When we equate Eqs. (97) and (98) and multiply the result by t, we get 

 

     
 

 
          

(99) 

 

To obtain a relationship between   and t that doesn’t contain   , we substitute Eq. 

(96) into Eq. (99): 

 

     
 

 
                 

(100) 

 

or 

 

          
 

 
   

  
(101) 

 

That is, if at the initial time     the body is at angular position    and has 

angular velocity    , then its angular position   at any later time t is the sum of 

three terms: its initial angular position   , plus the rotation      it would have if 

the angular velocity were constant, plus an additional rotation 
 

 
   

  caused by the 

changing angular velocity.Following the same procedure as for straight-line 

motion, we can combine Eqs. (96) and (101) to obtain a relationship between   

and    that does not contain t. We invite you to work out the details, following the 

same procedure we used to get Eq. (18). In fact, because of the perfect analogy 

between straight-line and rotational quantities, we can simply take Eq. (18) and 

replace each straight-line quantity by its rotational analog. We get  

 

  
     

            (102) 
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Table 3 Comparison of linear and angular motion with constant acceleration 

Straight-line motion with 

constant linear acceleration 

 Fixed-axis rotation with 

constant angular acceleration 

 

                          

              (8)            (96) 

          
 

 
    

  
(13) 

          
 

 
   

  
(101) 

  
     

            (18)   
     

            (102) 

      
      

 
   (19) 

     
 

 
          

(99) 

 

1.4.3 Relating linear and angular kinematics 

 

How do we find the linear speed and acceleration of a particular point in a 

rotating rigid body? We need to answer this question to proceed with our study of 

rotation. For example, to find the kinetic energy of a rotating body, we have to start 

from   
 

 
    for a particle, and this requires knowing the speed for each 

particle in the body. So it’s worthwhile to develop general relationships between 

the angular speed and acceleration of a rigid body rotating about a fixed axis and 

the linear speed and acceleration of a specific point or particle in the body. 

When a rigid body rotates about a fixed axis, every particle in the body 

moves in a circular path. The circle lies in a plane perpendicular to the axis and is 

centered on the axis. The speed of a particle is directly proportional to the body’s 

angular velocity; the faster the body rotates, the greater the speed of each particle. 

In Fig. 68, point P is a constant distance r from the axis of rotation, so it moves in 

a circle of radius r. At any time, the angle   (in radians) and the arc length s are 

related by 

 

     (103) 

 

We take the time derivative of this, noting that r is constant for any specific 

particle, and take the absolute value of both sides: 

 

 
  

  
    

  

  
  

(104) 

 

Now  
  

  
  is the absolute value of the rate of change of arc length, which is equal to 

the instantaneous linear speed   of the particle. Analogously,  
  

  
 , the absolute 

value of the rate of change of the angle, is the instantaneous angular speed   —

that is, the magnitude of the instantaneous angular velocity in rad/s. Thus 

 

     (105) 
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The farther a point is from the axis, the greater its linear speed. The direction of the 

linear velocity vector is tangent to its circular path at each point (see fig. 68). 

 

 
Figure 68 – A rigid body rotating about a fixed axis through point O 

 

We can represent the acceleration of a particle moving in a circle in terms of 

its centripetal and tangential components,      and      (see fig. 69). It would be a 

good idea to review that section now. We found that the tangential component of 

acceleration the component parallel to the instantaneous velocity, acts to change 

the magnitude of the particle’s velocity (i.e., the speed) and is equal to the rate of 

change of speed. Taking the derivative of Eq. (105), we find 

 

     
  

  
  

  

  
    

(106) 

 

This component of a particle’s acceleration is always tangent to the circular path of 

the particle. 

The quantity   
  

  
 in Eq. (106) is the rate of change of the angular speed. 

It is not quite the same as          , which is the rate of change of the angular 

velocity. For example, consider a body rotating so that its angular velocity vector 

points in the –z-direction (see Fig. 65b). If the body is gaining angular speed at a 
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rate of 10 rad/s per second, then            . But    is negative and becoming 

more negative as the rotation gains speed, so               The rule for 

rotation about a fixed axis is that   is equal to    if    is positive but equal to     

if    is negative. 

The component of the particle’s acceleration directed toward the rotation 

axis, the centripetal component of acceleration     , is associated with the 

change of direction of the particle’s velocity. Early we worked out the relationship 

     
  

 
. We can express this in terms of   by using Eq. (105): 

 

     
  

 
     

(107) 

 

 
Figure 69 – A rigid body whose rotation is speeding up. The acceleration of point 

P has a component      towards the rotation axis (perpendicular to   ) and a 

component      along the circle that point P follows (parallel to   ) 
 

This is true at each instant, even when and are not constant. The centripetal 

component always points toward the axis of rotation. 

The vector sum of the centripetal and tangential components of acceleration 

of a particle in a rotating body is the linear acceleration    (see fig. 69). 

Equations (89), (105), and (106) also apply to any particle that has the same 

tangential velocity as a point in a rotating rigid body. For example, when a rope 
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wound around a circular cylinder unwraps without stretching or slipping, its speed 

and acceleration at any instant are equal to the speed and tangential acceleration of 

the point at which it is tangent to the cylinder. The same principle holds for 

situations such as bicycle chains and sprockets, belts and pulleys that turn without 

slipping, and so on. We will have several opportunities to use these relationships 

later in this chapter. Note that Eq. (107) for the centripetal component is applicable 

to the rope or chain only at points that are in contact with the cylinder or sprocket. 

Other points do not have the same acceleration toward the center of the circle that 

points on the cylinder or sprocket have. 

It’s important to remember that Eq. (89), is valid only when is angle 

measured in radians. The same is true of any equation derived from this, including 

Eqs. (105), (106), and (107). When you use these equations, you must express the 

angular quantities in radians, not revolutions or degrees (see fig. 70). 

 

 
Figure 70 – Always use radians when relating linear and angular quantities 

 

1.4.4 Energy in rotational motion 

 

A rotating rigid body consists of mass in motion, so it has kinetic energy. As 

we will see, we can express this kinetic energy in terms of the body’s angular 

speed and a new quantity, called moment of inertia, that depends on the body’s 

mass and how the mass is distributed. 

To begin, we think of a body as being made up of a large number of 

particles, with masses         at distances         from the axis of rotation. We 

label the particles with the index i: The mass of the ith particle is    and its 
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distance from the axis of rotation is   . The particles don’t necessarily all lie in the 
same plane, so we specify that    is the perpendicular distance from the axis to the 

ith particle. 

When a rigid body rotates about a fixed axis, the speed    of the ith particle 

is given by Eq. (105),        where   is the body’s angular speed. Different 

particles have different values of r, but   is the same for all (otherwise, the body 

wouldn’t be rigid). The kinetic energy of the ith particle can be expressed as 

 
 

 
    

  
 

 
    

    
(108) 

 

The total kinetic energy of the body is the sum of the kinetic energies of all its 

particles: 

 

  
 

 
    

    
 

 
    

       
 

 
    

   

 

 
(109) 

 

Taking the common factor      out of this expression, we get 

 

  
 

 
     

      
       

 

 
      

 

 

    
(110) 

 

The quantity in parentheses, obtained by multiplying the mass of each particle by 

the square of its distance from the axis of rotation and adding these products, is 

denoted by I and is called the moment of inertia of the body for this rotation axis: 

 

      
      

         
 

 

 
(111) 

 

The word “moment” means that I depends on how the body’s mass is distributed in 

space; it has nothing to do with a “moment” of time. For a body with a given 

rotation axis and a given total mass, the greater the distance from the axis to 

theparticles that make up the body, the greater the moment of inertia. In a rigid 

body, the distances    are all constant and I is independent of how the body rotates 

around the given axis. The SI unit of moment of inertia is the kilogram-meter
2
 

(kg·m
2
). 

In terms of moment of inertia I, the rotational kinetic energy K of a rigid 

body is 

 

  
 

 
    

(112) 
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The kinetic energy given by Eq. (112) is not a new form of energy; it’s simply the 

sum of the kinetic energies of the individual particles that make up the rotating 

rigid body. To use Eq. (112),   must be measured in radians per second, not 

revolutions or degrees per second, to give K in joules. That’s because we used 

       in our derivation. 

Equation (112) gives a simple physical interpretation of moment of inertia: 

The greater the moment of inertia, the greater the kinetic energy of a rigid body 

rotating with a given angular speed  . We learned that the kinetic energy of a 

body equals the amount of work done to accelerate that body from rest. So the 

greater a body’s moment of inertia, the harder it is to start the bodyrotating if it’s at 

rest and the harder it is to stop its rotation if it’s already rotating (see fig. 71). For 

this reason, I is also called the rotational inertia. 

 

 
Figure 71 – An apparatus free to rotate around a vertical axis. To vary the 

moment of inertia, the two equal-mass cylinders can be locked into different 

positions on the horizontal shaft 

 

1.5 Conservation’s laws 

 

1.5.1 Conservation’s law of energy 

 

In our discussions of potential energy we have talked about “storing” kinetic 

energy by converting it to potential energy. We always have in mind that later we 

may retrieve it again as kinetic energy. For example, when you throw a ball up in 

the air, it slows down as kinetic energy is converted to gravitational potential 

energy. But on the way down, the conversion is reversed, and the ball speeds up as 

potential energy is converted back to kinetic energy. If there is no air resistance, 

the ball is moving just as fast when you catch it as when you threw it. 

Another example is a glider moving on a frictionless horizontal air track that 

runs into a spring bumper at the end of the track. The glider stops as it compresses 

the spring and then bounces back. If there is no friction, the glider ends up with the 

same speed and kinetic energy it had before the collision. Again, there is a two-
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way conversion from kinetic to potential energy and back. In both cases we can 

define a potential-energy function so that the total mechanical energy, kinetic plus 

potential, is constant or conserved during the motion. 

A force that offers this opportunity of two-way conversion between kinetic 

and potential energies is called a conservative force. We have seen two examples 

of conservative forces: the gravitational force and the spring force. An essential 

feature of conservative forces is that their work is always reversible. Anything that 

we deposit in the energy “bank” can later be withdrawn without loss. Another 

important aspect of conservative forces is that a body may move from point 1 to 

point 2 by various paths, but the work done by a conservative force is the same for 

all of these paths (see fig. 72). Thus, if a body stays close to the surface of the 

earth, the gravitational force     is independent of height, and the work done by 

this force depends only on the change in height. If the body moves around a closed 

path, ending at the same point where it started, the total work done by the 

gravitational force is always zero. 

 

 
Figure 72 – The work done by a conservative force such as gravity depends only 

on the end points of a path, not on the specific path taken between those points 

 

The work done by a conservative force always has four properties: 

1. It can be expressed as the difference between the initial and final values of a 

potential-energy function. 

2. It is reversible. 

3. It is independent of the path of the body and depends only on the starting and 

ending points. 

4. When the starting and ending points are the same, the total work is zero. 
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When the only forces that do work are conservative forces, the total mechanical 

energy       is constant. 

Not all forces are conservative. Consider the friction force acting on the 

crate sliding on a ramp. When the body slides up and then back down to the 

starting point, the total work done on it by the friction force is not zero. When the 

direction of motion reverses, so does the friction force, and friction does negative 

work in both directions. When a car with its brakes locked skids across the 

pavement with decreasing speed (and decreasing kinetic energy), the lost kinetic 

energy cannot be recovered by reversing the motion or in any other way, and 

mechanical energy is not conserved. There is no potential-energy function for the 

friction force. 

In the same way, the force of fluid resistance is not conservative. If you 

throw a ball up in the air, air resistance does negative work on the ball while it’s 

rising and while it’s descending. The ball returns to your hand with less speed and 

less kinetic energy than when it left, and there is no way to get back the lost 

mechanical energy. 

A force that is not conservative is called a nonconservative force. The work 

done by a nonconservative force cannot be represented by a potential-energy 

function. Some nonconservative forces, like kinetic friction or fluid resistance, 

cause mechanical energy to be lost or dissipated; a force of this kind is called a 

dissipative force. There are also nonconservative forces that increase mechanical 

energy. The fragments of an exploding firecracker fly off with very large kinetic 

energy, thanks to a chemical reaction of gunpowder with oxygen. The forces 

unleashed by this reaction are nonconservative because the process is not 

reversible. (The fragments never spontaneously reassemble themselves into a 

complete firecracker!) 

Nonconservative forces cannot be represented in terms of potential energy. 

But we can describe the effects of these forces in terms of kinds of energy other 

than kinetic and potential energy. When a car with locked brakes skids to a stop, 

the tires and the road surface both become hotter. The energy associated with this 

change in the state of the materials is called internal energy. Raising the 

temperature of a body increases its internal energy; lowering the body’s 

temperature decreases its internal energy. 

To see the significance of internal energy, let’s consider a block sliding on a 

rough surface. Friction does negative work on the block as it slides, and the change 

in internal energy of the block and surface (both of which get hotter) is positive. 

Careful experiments show that the increase in the internal energy is exactly equal 

to the absolute value of the work done by friction. In other words, 

 

              (113) 

 

where       is the change in internal energy. If we substitute this into Eq. 

(7.7) or (7.14), we find 
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                  (114) 

 

Writing          and          we can finally express this as 

              (115) 

 

This remarkable statement is the general form of the law of conservation of 

energy. In a given process, the kinetic energy, potential energy, and internal 

energy of a system may all change. But the sum of those changes is always zero. 

If there is a decrease in one form of energy, it is made up for by an increase in the 

other forms (see fig. 73). When we expand our definition of energy to include 

internal energy, Eq. (115) says: Energy is never created or destroyed; it only 

changes form. No exception to this rule has ever been found. 

 

 
Figure 73 – When 1 liter of gasoline is burned in an automotive engine, it releases 

          of internal energy. Hence                 , where  the minus 

sign means that the amount of energy stored in the gasoline has decreased. This 

energy can be converted to kinetic energy  (making the car go faster) or to potential 

energy (enabling the car to climb uphill) 

 

The concept of work has been banished from Eq. (115); instead, it suggests 

that we think purely in terms of the conversion of energy from one form to another. 

For example, when you throw a baseball straight up, you convert a portion of the 

internal energy of your molecules to kinetic energy of the baseball. This is 

converted to gravitational potential energy as the ball climbs and back to kinetic 

energy as the ball falls. If there is air resistance, part of the energy is used to heat  
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up the air and the ball and increase their internal energy. Energy is converted back 

to the kinetic form as the ball falls. If you catch the ball in your hand, whatever 

energy was not lost to the air once again becomes internal energy; the ball and  

your hand are now warmer than they were at the beginning. 
 

1.5.2 Momentum and impulse 

 

Early we re-expressed Newton’s second law for a particle, in terms of the 

work–energy theorem. This theorem helped us tackle a great number of physics 

problems and led us to the law of conservation of energy. Let’s now return to and 

see yet another useful way to restate this fundamental law. 

Consider a particle of constant mass m. (Later we’ll see how to deal with 

situations in which the mass of a body changes.) Because          , we can write 

Newton’s second law for this particle as 

 

    
   

  
 

 

  
      

(116) 

 

We can move the mass   inside the derivative because it is constant. Thus 

Newton’s second law says that the net force     acting on a particle equals the 

time rate of change of the combination    , the product of the particle’s mass and 

velocity. We’ll call this combination the momentum, or linear momentum, of the 

particle. Using the symbol    for momentum, we have 

 

       (117) 

 

The greater the mass  and speed    of a particle, the greater is its magnitude of 

momentum   . Keep in mind, however, that momentum is a vector quantity with 

the same direction as the particle’s velocity (see fig. 8.1). Hence a car driving north 

at        and an identical car driving east at        have the same magnitude of 

momentum      but different momentum vectors       because their directions 

are different. 
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Figure 74 – The velocity and momentum vectors of a particle 

 

We often express the momentum of a particle in terms of its components. If 

the particle has velocity components       and    then its momentum components 

      and    (which we also call the x-momentum, y-momentum, and z-

momentum) are given by 

 

                     (118) 

 

These three component equations are equivalent to Eq. (117). 

The units of the magnitude of momentum are units of mass times speed; the 

SI units of momentum are       . The plural of momentum is “momenta.” 

If we now substitute the definition of momentum, Eq. (117), into Eq. (116), 

we get 

 

    
   

  
 

(119) 

 

. This, not         is the form in which Newton originally stated his second law 

(although he called momentum the “quantity of motion”). This law is valid only in 

inertial frames of reference. 

According to Eq. (119), a rapid change in momentum requires a large net 

force, while a gradual change in momentum requires less net force. This principle 

is used in the design of automobile safety devices such as air bags (see fig. 75). 

A particle’s momentum        and its kinetic energy   
 

 
    both 

depend on the mass and velocity of the particle. What is the fundamental 

difference between these two quantities? A purely mathematical answer is that 

momentum is a vector whose magnitude is proportional to speed, while kinetic 
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energy is a scalar proportional to the speed squared. But to see the physical 

difference between momentum and kinetic energy, we must first define a quantity 

closely related to momentum called impulse. 

Let’s first consider a particle acted on by a constant net force     during a 

time interval    from    to    (We’ll look at the case of varying forces shortly.) 

The impulse of the net force, denoted by    is defined to be the product of the net 

force and the time interval: 

 

                    (120) 

 

Impulse is a vector quantity; its direction is the same as the net force    . Its 

magnitude is the product of the magnitude of the net force and the length of time 

that the net force acts. The SI unit of impulse is the newton-second       Because 

             , an alternative set of units for impulse is        , the same 

as the units of momentum. 

 

 
Figure 75 – If a fast moving automatic stops suddenly in a collision, the driver’s 

momentum (mass times velocity) changes from a large value to zero in a short 

time. An air bag cause the drivers to lose momentum more gradually than would an 

abrupt collision with the steering wheel, reducing the force exerted on the drivers 

as well as the possibility of injury 

 

To see what impulse is good for, let’s go back to Newton’s second law as 

restated in terms of momentum, Eq. (119). If the net force     is constant, then 
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       is also constant. In that case,        is equal to the total change in 

momentum         during the time interval      , divided by the interval: 

 

    
       
     

 
(121) 

 

Multiplying this equation by         we have 

 

 (122) 

                    

 

Comparing with Eq. (120), we end up with a result called the impulse–

momentum theorem: 

           (123) 

 

The change in momentum of a particle during a time interval equals the 

impulse of the net force that acts on the particle during that interval. 

The impulse–momentum theorem also holds when forces are not constant. 

To see this, we integrate both sides of Newton’s second law            over 

time between the limits    and   : 

 

    

  

  

    
   

  

  

  

       

   

   

         

(124) 

 

The integral on the left is defined to be the impulse    of the net force     during 

this interval: 

 

       

  

  

   

(125) 

 

With this definition, the impulse–momentum theorem            Eq. (123), is 

valid even when the net force     varies with time. 

We can define an average net    force      such that even when     is not 

constant, the impulse  is given by 

 

               (126) 

 

When     is constant,          and Eq. (126) reduces to Eq. (120). 
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Figure 76a shows the x-component of net force     as a function of time 

during a collision. This might represent the force on a soccer ball that is in contact 

with a player’s foot from time    to   . The x-component of impulse during this 

interval is represented by the red area under the curve between    and   . This area 

is equal to the green rectangular area bounded by       and         so        
    

 1 is equal to the impulse of the actual time-varying force during the same interval. 

Note that a large force acting for a short time can have the same impulse as a 

smaller force acting for a longer time if the areas under the force–time curves are 

the same (see fig. 8.3b). In this language, an automobile airbag (see Fig. 62) 

provides the same impulse to the driver as would the steering wheel or the 

dashboard by applying a weaker and less injurious force for a longer time. 

 

 
Figure 76 – The meaning of the area under a graph of     versus t 
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Impulse and momentum are both vector quantities, and Eqs. (120)–(126) are 

all vector equations. In specific problems, it is often easiest to use them in 

component form: 

 

       

  

  

          
                            

       

  

  

          
                            

 

 

 

(127) 

 

 

and similarly for the z-component. 

 

1.5.3 Conservation’s law of momentum 

 

The concept of momentum is particularly important in situations in which 

we have two or more bodies that interact. To see why, let’s consider first an 

idealized system of two bodies that interact with each other but not with anything 

else—for example, two astronauts who touch each other as they float freely in the 

zero-gravity environment of outer space (see fig. 8.8). Think of the astronauts as 

particles. Each particle exerts a force on the other; according to Newton’s third 

law, the two forces are always equal in magnitude and opposite in direction. 

Hence, the impulses that act on the two particles are equal and opposite, and the 

changes in momentum of the two particles are equal and opposite. 

Let’s go over that again with some new terminology. For any system, the 

forces that the particles of the system exert on each other are called internal 

forces. Forces exerted on any part of the system by some object outside it are 

called external forces. For the system shown in Fig. 8.8, the internal forces are 

        , exerted by particle B on particle A, and          exerted by particle A on 

particle B. There are no external forces; when this is the case, we have an isolated 

system. 
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Figure 77 – Two astronauts push each other as they float freely in the zero-gravity 

environment of space 

 

The net force on particle A is          and the net force on particle B is          

so from Eq. (119) the rates of change of the momenta of the two particles are 

 

         
    
  

          
    
  

 
(128) 

 

The momentum of each particle changes, but these changes are related to 

each other by Newton’s third law: The two forces          and          are always 

equal in magnitude and opposite in direction. That is,                    so 

                   . Adding together the two equations in Eq. (128), we have  

 

                  
    
  

 
    
  

 
          

  
   

(129) 

 

The rates of change of the two momenta are equal and opposite, so the rate 

of change of the vector sum         is zero. We now define the total momentum 

    of the system of two particles as the vector sum of the momenta of the individual 

particles; that is, 
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            (130) 

 

Then Eq. (129) becomes, finally, 

 

                  
    

  
   

(131) 

 

The time rate of change of the total momentum     is zero. Hence the total 

momentum of the system is constant, even though the individual momenta of the 

particles that make up the system can change. 

If external forces are also present, they must be included on the left side of 

Eq. (131) along with the internal forces. Then the total momentum is, in general, 

not constant. But if the vector sum of the external forces is zero, as in Fig. 8.9, 

these forces have no effect on the left side of Eq. (131), and 
    

  
 is again zero. Thus 

we have the following general result: 

If the vector sum of the external forces on a system is zero, the total 

momentum of the system is constant. 

This is the simplest form of the principle of conservation of momentum. This 

principle is a direct consequence of Newton’s third law. What makes this principle 

useful is that it doesn’t depend on the detailed nature of the internal forces that act 

between members of the system. This means that we can apply conservation of 

momentum even if (as is often the case) we know very little about the internal 

forces. We have used Newton’s second law to derive this principle, so we have to 

be careful to use it only in inertial frames of reference. 

We can generalize this principle for a system that contains any number of 

particles A, B, C, . . . interacting only with one another. The total momentum of 

such a system is 

 

                            (132) 

 

We make the same argument as before: The total rate of change of 

momentum of the system due to each action–reaction pair of internal forces is zero. 

Thus the total rate of change of momentum of the entire system is zero whenever 

the vector sum of the external forces acting on it is zero. The internal forces can 

change the momenta of individual particles in the system but not the total 

momentum of the system. 

In some ways the principle of conservation of momentum is more general 

than the principle of conservation of mechanical energy. For example, mechanical 

energy is conserved only when the internal forces are conservative—that is, when 

the forces allow two-way conversion between kinetic and potential energy—but 

conservation of momentum is valid even when the internal forces are not 

conservative. In this chapter we will analyze situations in which both momentum 



102 
 

and mechanical energy are conserved, and others in which only momentum is 

conserved. These two principles play a fundamental role in all areas of physics, 

and we will encounter them throughout our study of physics. 

 

1.5.4 Torque and angular momentum 

 

We know that forces acting on a body can affect its translational motion—

that is, the motion of the body as a whole through space. Now we want to learn 

which aspects of a force determine how effective it is in causing or changing 

rotational motion. The magnitude and direction of the force are important, but so is 

the point on the body where the force is applied. In Fig. 78 a wrench is being used 

to loosen a tight bolt. Force     applied near the end of the handle, is more effective 

than an equal force     applied near the bolt. Force doesn’t do any good at all; it’s 

applied at the same point and has the same magnitude as but it’s directed along the 

length of the handle. The quantitative measure of the tendency of a force to cause 

or change a body’s rotational motion is called torque; we say that     applies a 

torque about point O to the wrench in Fig. 78,     applies a greater torque about O, 

and     applies zero torque about O. 

 

 
Figure 78 – Which of these three equal-magnitude forces is most likely 

loosen the tight bolt? 

 

Figure 79 shows three examples of how to calculate torque. The body in the 

figure can rotate about an axis that is perpendicular to the plane of the figure and 

passes through point O. Three forces        , and     act on the body in the plane of 
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the figure. The tendency of the first of these forces    , to cause a rotation about O 

depends on its magnitude   . It also depends on the perpendicular distance    

between point O and the line of action of the force (that is, the line along which 

the force vector lies). We call the distance    the lever arm (or moment arm) of 

force    about O. The twisting effort is directly proportional to both    and    so we 

define the torque (or moment) of the force     with respect to O as the product 

    . We use the Greek letter   (tau) for torque. In general, for a force of 

magnitude F whose line of action is a perpendicular distance l from O, the torque 

is 

 

     (133) 

 

Physicists usually use the term “torque,” while engineers usually use 

“moment” (unless they are talking about a rotating shaft). Both groups use the term 

“lever arm” or “moment arm” for the distance l. 

 

 
Figure 79 – The torque of a force about a point is the product of the magnitude and 

the lever arm of the force 
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The lever arm of     in Fig. 79 is the perpendicular distance    and the lever 

arm of     is the perpendicular distance    . The line of action of passes through 

point O, so the lever arm for     is zero and its torque with respect to O is zero. In 

the same way, force     in Fig. 78 has zero torque with respect to point O;     has a 

greater torque than     because its lever arm is greater. 

Force     in Fig. 79 tends to cause counterclockwise rotation about O, while 

    tends to cause clockwise rotation. To distinguish between these two 

possibilities, we need to choose a positive sense of rotation. With the choice that 

counterclockwise torques are positive and clockwise torques are negative, the 

torques of     and     about O are 

 

                  (134) 

 

Figure 79 shows this choice for the sign of torque. We will often use the symbol 

 to indicate our choice of the positive sense of rotation. 

The SI unit of torque is the newton-meter. In our discussion of work and 

energy we called this combination the joule. But torque is not work or energy, 

and torque should be expressed in newton-meters, not joules. 

Figure 80 shows a force    applied at a point P described by a position vector 

   with respect to the chosen point O. There are three ways to calculate the torque 

of this force: 

1. Find the lever arm      and use 

2. Determine the angle   between the vectors    and   ; the lever arm is 

     , so          

3. Represent    in terms of a radial component      along the direction of    
and a tangential component      at right angles, perpendicular to   . (We call this a 

tangential component because if the body rotates, the point where the force acts 

moves in a circle, and this component is tangent to that circle.) Then      
      and                 . The component      produces no torque with 

respect to O because its lever arm with respect to that point is zero (compare to 

forces     in Fig. 78 and     in Fig. 79). 
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Figure 80 – Three ways to calculate the torque of the force about the point O. In 

this figure    and    are in the plane of the page and the torque vector    points out of 

the page toward you 

 

Summarizing these three expressions for torque, we have 

 

                  (135) 

 

We saw that angular velocity and angular acceleration can be represented as 

vectors; the same is true for torque. To see how to do this, note that the quantity in 

Eq. (10.2) is the magnitude of the vector product      . We now generalize the 

definition of torque as follows: When a force    acts at a point having a position 

vector    with respect to an origin O, as in Fig. 10.3, the    torque of the force with 

respect to O is the vector quantity 

 

         (136) 

 

The torque as defined in Eq. (10.2) is just the magnitude of the torque vector    

  . The direction of    is perpendicular to both    and   . In particular, if both    and    
lie in a plane perpendicular to the axis of rotation, as in Fig. 80, then the torque 

vector          is directed along the axis of rotation, with a sense given by the 

right-hand rule (see fig. 81). 
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Figure 81 – (a) The vector product        determined by the right-hand rule. (b) 

              ; the vector product in anticommutative 

 

In diagrams that involve       and    it’s common to have one of the vectors 

oriented perpendicular to the page. (Indeed, by the very nature of the cross product, 

         must be perpendicular to the plane of the vectors    and   ) We use a dot 

( )  to represent a vector that points out of the page (see Fig. 80) and a cross ( ) to 

represent a vector that points into the page. 

In the following sections we will usually be concerned with rotation of a 

body about an axis oriented in a specified constant direction. In that case, only the 

component of torque along that axis is of interest, and we often call that component 

the torque with respect to the specified axis. 

Every rotational quantity is the analog of some quantity in the translational 

motion of a particle. The analog of momentum of a particle is angular 

momentum, a vector quantity denoted as    . Its relationship to momentum    
(which we will often call linear momentum for clarity) is exactly the same as the 

relationship of torque to force,         . For a particle with constant mass m, 

velocity   , momentum        and position vector    relative to the origin O of an 

inertial frame, we define angular momentum     as 

 

                 (137) 
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The value of     depends on the choice of origin O, since it involves the particle’s 
position vector relative to O. The units of angular momentum are        . 

In Fig. 82 a particle moves in the xy-plane; its position vector and 

momentum        are shown. The angular momentum vector     is perpendicular 

to the xy-plane. The right-hand rule for vector products shows that its direction is 

along the +z-axis and its magnitude is 

 

              (138) 

 

where l is the perpendicular distance from the line of    to O. This distance plays 

the role of “lever arm” for the momentum vector. 

When a net force    acts on a particle, its velocity and momentum change, so 

its angular momentum may also change. We can show that the rate of change of 

angular momentum is equal to the torque of the net force. We take the time 

derivative of Eq. (137), using the rule for the derivative of a product: 

 

    

  
  

   

  
           

   

  
                    

(139) 

 

The first term is zero because it contains the vector product of the vector    
   

  
 

with itself. In the second term we replace with the net force    obtaining 

 

    

  
          

(140) 

 

 

The rate of change of angular momentum of a particle equals the torque of 

the net force acting on it. Compare this result to Eq. (119), which states that the 

rate of change         of the linear momentum of a particle equals the net force 

that acts on it. 
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Figure 82 – Calculating the angular momentum                  of a particle 

with mass m moving in the xy-plane 

 

We can use Eq. (138) to find the total angular momentum of a rigid body 

rotating about the z-axis with angular speed  . First consider a thin slice of the 

body lying in the xy-plane (see fig. 83). Each particle in the slice moves in a circle 

centered at the origin, and at each instant its velocity    is perpendicular to its 

position vector     as shown. Hence in Eq. (138),       for every particle. A 

particle with mass    at a distance     from O has a speed    equal to From Eq. 

(138) the magnitude    of its angular momentum is 

 

                   
   (141) 

 

The direction of each particle’s angular momentum, as given by the right-hand rule 

for the vector product, is along the +z-axis. 
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Figure 83 – Calculating the angular momentum of a particle of mass    in a rigid 

body rotating  at angular speed   

 

The total angular momentum of the slice of the body lying in the xy-plane is 

the sum     of the angular momenta    of the particles. Summing Eq. (141), we 

have 

 

            
       

(142) 

 

where I is the moment of inertia of the slice about the z-axis. 

We can do this same calculation for the other slices of the body, all parallel 

to the xy-plane. For points that do not lie in the xy-plane, a complication arises 

because the    vectors have components in the z-direction as well as the x- and y-

directions; this gives the angular momentum of each particle a component 

perpendicular to the z-axis. But if the z-axis is an axis of symmetry, the 

perpendicular components for particles on opposite sides of this axis add up to zero 

(see fig. 84). So when a body rotates about an axis of symmetry, its angular 

momentum vector     lies along the symmetry axis, and its magnitude is     . 
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Figure 84 – Two particles of the same mass located symmetrically on either side of 

the rotation axis of a rigid body. The angular momentum vectors      and      of the 

two particles do not lie along the rotation axis, but their vector sum           

 

The angular velocity vector      also lies along the rotation axis. . Hence for a 

rigid body rotating around an axis of symmetry,     and      are in the same direction 

(see fig. 85). So we have the vector relationship 

 

          (143) 

 

 
Figure 85 – For rotation about an axis of symmetry,      and     are parallel and along 

the axis. The directions of both vectors are given by the right-hand rule 
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From Eq. (140) the rate of change of angular momentum of a particle equals 

the torque of the net force acting on the particle. For any system of particles 

(including both rigid and nonrigid bodies), the rate of change of the total angular 

momentum equals the sum of the torques of all forces acting on all the particles. 

The torques of the internal forces add to zero if these forces act along the line from 

one particle to another, as in Fig. 86, and so the sum of the torques includes only 

the torques of the external forces. If the total angular momentum of the system of 

particles is     and the sum of the external torques is     then 

 

    
    

  
 

(144) 

 

 
Figure 86 – Two particles in a rigid body exert equal and opposite forces on each 

other. If the forces act along the line joining the particles, the lever arms of the 

forces with respect to an axis through O are the same and the torques due to the 

two forces are equal and opposite. Only external torques affect the body’s rotation 

 

Finally, if the system of particles is a rigid body rotating about a symmetry axis 

(the z-axis), then        and I is constant. If this axis has a fixed direction in 

space, then the vectors     and      change only in magnitude, not in direction. In that 

case,                    or 

 

        
(145) 
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which is again our basic relationship for the dynamics of rigid-body rotation. If the 

body is not rigid, I may change, and in that case, L changes even when is constant. 

For a nonrigid body, Eq. (144) is still valid, even though Eq. (10.7) is not.  

When the axis of rotation is not a symmetry axis, the angular momentum is 

in general not parallel to the axis (see fig. 87). As the body turns, the angular 

momentum vector     traces out a cone around the rotation axis. Because     changes, 

there must be a net external torque acting on the body even though the angular 

velocity magnitude may be constant. If the body is an unbalanced wheel on a car, 

this torque is provided by friction in the bearings, which causes the bearings to 

wear out. “Balancing” a wheel means distributing the mass so that the rotation axis 

is an axis of symmetry; then     points along the rotation axis, and no net torque is 

required to keep the wheel turning. 

 

 
Figure 87 -If the rotation axis of a rigid body is not a symmetry axis,     does not in 

general lie along the rotation axis. Even if      is constant, the direction of     changes 

and a net torque is required to maintain rotation 

 

In fixed-axis rotation we often use the term “angular momentum of the 

body” to refer to only the component of     along the rotation axis of the body (the z-

axis in Fig. 87), with a positive or negative sign to indicate the sense of rotation 

just as with angular velocity. 

 

1.5.5 Conservation’s law of angular momentum 

 

We have just seen that angular momentum can be used for an alternative 

statement of the basic dynamic principle for rotational motion. It also forms the 

basis for the principle of conservation of angular momentum. Like conservation 
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of energy and of linear momentum, this principle is a universal conservation law, 

valid at all scales from atomic and nuclear systems to the motions of galaxies. This 

principle follows directly from Eq. (144):     
    

  
. If      , then 

    

  
  , and     

is constant. 

When the net external torque acting on a system is zero, the total angular 

momentum of the system is constant (conserved). 

A circus acrobat, a diver, and an ice skater pirouetting on the toe of one 

skate all take advantage of this principle. Suppose an acrobat has just left a swing 

with arms and legs extended and rotating counterclockwise about her center of 

mass. When she pulls her arms and legs in, her moment of inertia     with respect 

to her center of mass changes from a large value    to a much smaller value   . The 

only external force acting on her is her weight, which has no torque with respect to 

an axis through her center of mass. So her angular momentum          remains 

constant, and her angular velocity    increases as     decreases. That is, 

 

           (146) 

 

When a skater or ballerina spins with arms outstretched and then pulls her arms in, 

her angular velocity increases as her moment of inertia decreases. In each case 

there is conservation of angular momentum in a system in which the net external 

torque is zero. 

When a system has several parts, the internal forces that the parts exert on 

one another cause changes in the angular momenta of the parts, but the total 

angular momentum doesn’t change. Here’s an example. Consider two bodies A 

and B that interact with each other but not with anything else. Suppose body A 

exerts a force          on body B; the corresponding torque (with respect to 

whatever point we choose) is         . According to Eq. (144), this torque is equal 

to the rate of change of angular momentum of B: 

 

         
     
  

 
(147) 

 

At the same time, body B exerts a force          on body A, with a corresponding 

torque          and 

 

         
     
  

 
(148) 

 

From Newton’s third law                   , Furthermore, if the forces act along 

the same line, as in Fig. 86, their lever arms with respect to the chosen axis are 

equal. Thus the torques of these two forces are equal and opposite, and          
         . So if we add the two preceding equations, we find 
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(149) 

 

or, because           is the total angular momentum     of the system, 

 

    

  
   

(150) 

 

That is, the total angular momentum of the system is constant. The torques of the 

internal forces can transfer angular momentum from one body to the other, but 

they can’t change the total angular momentum of the system (see fig. 88). 

 

 
Figure 88 – A falling cat twists different parts of its body in different directions so 

that it lands feet first. At all times during this process the angular momentum of the 

cat as a whole remains zero 
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1.6 Periodic motion 

 

1.6.1 Describing Oscillation 

 

Many kinds of motion repeat themselves over and over: the vibration of a 

quartz crystal in a watch, the swinging pendulum of a grandfather clock, the sound 

vibrations produced by a clarinet or an organ pipe, and the back-and-forth motion 

of the pistons in a car engine. This kind of motion, called periodic motion or 

oscillation, is the subject of this chapter. Understanding periodic motion will be 

essential for our later study of waves, sound, alternating electric currents, and light. 

A body that undergoes periodic motion always has a stable equilibrium 

position. When it is moved away from this position and released, a force or torque 

comes into play to pull it back toward equilibrium. But by the time it gets there, it 

has picked up some kinetic energy, so it overshoots, stopping somewhere on the 

other side, and is again pulled back toward equilibrium. Picture a ball rolling back 

and forth in a round bowl or a pendulum that swings back and forth past its 

straight-down position. 

In this chapter we will concentrate on two simple examples of systems that 

can undergo periodic motions: spring-mass systems and pendulums. We will also 

study why oscillations often tend to die out with time and why some oscillations 

can build up to greater and greater displacements from equilibrium when 

periodically varying forces act. 

Figure 89 shows one of the simplest systems that can have periodic motion. 

A body with mass m rests on a frictionless horizontal guide system, such as a linear 

air track, so it can move only along the x-axis. The body is attached to a spring of 

negligible mass that can be either stretched or compressed. The left end of the 

spring is held fixed and the right end is attached to the body. The spring force is 

the only horizontal force acting on the body; the vertical normal and gravitational 

forces always add to zero. 

 

 
Figure 89 – A system that can have periodic motion 

 

It’s simplest to define our coordinate system so that the origin O is at the 

equilibrium position, where the spring is neither stretched nor compressed. Then x 
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is the x-component of the displacement of the body from equilibrium and is also 

the change in the length of the spring. The x-component of the force that the spring 

exerts on the body is    and the x-component of acceleration    is given by 

       . 

Figure 90 shows the body for three different displacements of the spring. 

Whenever the body is displaced from its equilibrium position, the spring force 

tends to restore it to the equilibrium position. We call a force with this character a 

restoring force. Oscillation can occur only when there is a restoring force tending 

to return the system to equilibrium. 

Let’s analyze how oscillation occurs in this system. If we displace the body 

to the right to     and then let go, the net force and the acceleration are to the 

left (see fig. 90a). The speed increases as the body approaches the equilibrium 

position O. When the body is at O, the net force acting on it is zero (see fig. 90b), 

but because of its motion it overshoots the equilibrium position. On the other side 

of the equilibrium position the body is still moving to the left, but the net force and 

the acceleration are to the right (see fig. 90c); hence the speed decreases until the 

body comes to a stop. We will show later that with an ideal spring, the stopping 

point is at     . The body then accelerates to the right, overshoots equilibrium 

again, and stops at the starting point ready to repeat the whole process. The body is 

oscillating! If there is no friction or other force to remove mechanical energy from 

the system, this motion repeats forever; the restoring force perpetually draws the 

body back toward the equilibrium position, only to have the body overshoot time 

after time. 

In different situations the force may depend on the displacement x from 

equilibrium in different ways. But oscillation always occurs if the force is a 

restoring force that tends to return the system to equilibrium. 

Amplitude, Period, Frequency, and Angular Frequency are some terms 

that we’ll use in discussing periodic motions of all kinds. 

The amplitude of the motion, denoted by A, is the maximum magnitude of 

displacement from equilibrium—that is, the maximum value of    . It is always 

positive. If the spring in Fig. 90 is an ideal one, the total overall range of the 

motion is 2A. The SI unit of A is the meter. A complete vibration, or cycle, is one 

complete round trip—say, from A to –A and back to A, or from O to A, back 

through O to –A and back to O. Note that motion from one side to the other (say, to 

A) is a half-cycle, not a whole cycle. 

The period, T, is the time for one cycle. It is always positive. The SI unit is 

the second, but it is sometimes expressed as “seconds per cycle.” 

The frequency, is the number of cycles in a unit of time. It is always 

positive. The SI unit of frequency is the hertz: 
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This unit is named in honor of the German physicist Heinrich Hertz (1857–1894), 

a pioneer in investigating electromagnetic waves. 

The angular frequency,   , is    times the frequency: 

 

      (151) 

 

 

 
Figure 90 – Model for periodic motion. When the body is displaced from its 

equilibrium position at    , the spring exerts a restoring force back toward the 

equilibrium position 
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We’ll learn shortly why   is a useful quantity. It represents the rate of change of 

an angular quantity (not necessarily related to a rotational motion) that is always 

measured in radians, so its units are      . Since   is in        , we may regard 

the number    as having units        . 

From the definitions of period T and frequency   we see that each is the 

reciprocal of the other: 

 

  
 

 
    

 

 
 

(152) 

 

Also, from the definition of    

 

      
  

 
 

(153) 

 
1.6.2 Simple harmonic motion 

 

The simplest kind of oscillation occurs when the restoring force    is 

directly proportional to the displacement from equilibrium x. This happens if the 

spring in Figs. 89 and 90 is an ideal one that obeys Hooke’s law. The constant of 

proportionality between and x is the force constant k. On either side of the 

equilibrium position,    and x always have opposite signs. Early we represented 

the force acting on a stretched ideal spring as      . The x-component of force 

the spring exerts on the body is the negative of this, so the x-component of force    

on the body is 

 

       (154) 

 

This equation gives the correct magnitude and sign of the force, whether x is 

positive, negative, or zero (see fig. 91). The force constant k is always positive and 

has units of    . We are assuming that there is no friction, so Eq. (154) gives the 

net force on the body. 

When the restoring force is directly proportional to the displacement from 

equilibrium, as given by Eq. (154), the oscillation is called simple harmonic 

motion, abbreviated SHM. The acceleration    
   

   
      of a body in SHM 

is given by 

 

   
   

   
  

 

 
  

(155) 

 

The minus sign means the acceleration and displacement always have opposite 

signs. This acceleration is not constant, so don’t even think of using the constant-

acceleration equations. We’ll see shortly how to solve this equation to find the 
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displacement x as a function of time. A body that undergoes simple harmonic 

motion is called a harmonic oscillator. 

 

 
Figure 91 – An idealized spring exerts a restoring force obeys Hooke’s law, 

      . Oscillation which such a restoring force is called simple harmonic 

motion 

 

Why is simple harmonic motion important? Keep in mind that not all 

periodic motions are simple harmonic; in periodic motion in general, the restoring 

force depends on displacement in a more complicated way than in Eq. (154). But 

in many systems the restoring force is approximately proportional to displacement 

if the displacement is sufficiently small (see fig. 92). That is, if the amplitude is 

small enough, the oscillations of such systems are approximately simple harmonic 

and therefore approximately described by Eq. (155). Thus we can use SHM as an 

approximate model for many different periodic motions, such as the vibration of 

the quartz crystal in a watch, the motion of a tuning fork, the electric current in an 

alternating-current circuit, and the oscillations of atoms in molecules and solids. 

To explore the properties of simple harmonic motion, we must express the 

displacement x of the oscillating body as a function of time,     . The second 

derivative of this function, 
   

   
, must be equal to   

 

 
  times the function itself, as 

required by Eq. (155). As we mentioned, the formulas for constant acceleration 
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are no help because the acceleration changes constantly as the displacement x 

changes. Instead, we’ll find by noticing a striking similarity between SHM and 

another form of motion that we’ve already studied. 

 

 
Figure 92 – In most real oscillations Hooke’s law applies provided the body 

doesn’t move too far from equilibrium. In such a case small-amplitude oscillations 

are approximately simple harmonic 

 

Figure 93a shows a top view of a horizontal disk of radius A with a ball 

attached to its rim at point Q. The disk rotates with constant angular speed 

(measured in so the ball moves in uniform circular motion. A horizontal light beam 

shines on the rotating disk and casts a shadow of the ball on a screen. The shadow 

at point P oscillates back and forth as the ball moves in a circle. We then arrange a 

body attached to an ideal spring, like the combination shown in Figs. 89 and 90, so 

that the body oscillates parallel to the shadow. We will prove that the motion of the 

body and the motion of the ball’s shadow are identical if the amplitude of the 

body’s oscillation is equal to the disk radius A, and if the angular frequency     of 

the oscillating body is equal to the angular speed of the rotating disk. That is, 

simple harmonic motion is the projection of uniform circular motion onto a 

diameter. 
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Figure 93 – (a) Relating uniform circular motion and simple harmonic motion. (b) 

The ball’s shadow moves exactly like a body oscillating on an ideal spring 

 

We can verify this remarkable statement by finding the acceleration of the 

shadow at P and comparing it to the acceleration of a body undergoing SHM, 

given by Eq. (155). The circle in which the ball moves so that its projection 

matches the motion of the oscillating body is called the reference circle; we will 

call the point Q the reference point. We take the reference circle to lie in the xy-

plane, with the origin O at the center of the circle (see fig. 93b). At time t the 

vector OQ from the origin to the reference point Q makes an angle with the 

positive x-axis. As the point Q moves around the reference circle with constant 

angular speed the vector OQ rotates with the same angular speed. Such a rotating 

vector is called a phasor. The phasor method for analyzing oscillations is useful in 

many areas of physics. 

The x-component of the phasor at time t is just the x-coordinate of the point 

Q: 

 

        (156) 

 

This is also the x-coordinate of the shadow P, which is the projection of Q onto the 

x-axis. Hence the x-velocity of the shadow P along the x-axis is equal to the x-

component of the velocity vector of point Q (see fig. 94a), and the x-acceleration 

of P is equal to the x-component of the acceleration vector of Q (see fig. 94b). 

Since point Q is in uniform circular motion, its acceleration vector     is always 

directed toward O. Furthermore, the magnitude of     is constant and given by the 

angular speed squared times the radius of the circle: 

 

       (157) 
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Figure 94b shows that the x-component of     is           . Combining this 

with Eqs. (156) and (157), we get that the acceleration of point P is 

 

                   (158) 

or  

        (159) 

 

The acceleration of point P is directly proportional to the displacement x and 

always has the opposite sign. These are precisely the hallmarks of simple harmonic 

motion. 

Equation (159) is exactly the same as Eq. (155) for the acceleration of a 

harmonic oscillator, provided that the angular speed of the reference point Q is 

related to the force constant k and mass m of the oscillating body by 

 

   
 

 
 

(160) 

or 

   
 

 
 

(161) 

 

We have been using the same symbol for the angular speed of the reference point 

Q and the angular frequency of the oscillating point P. The reason is that these 

quantities are equal! If point Q makes one complete revolution in time T, then 

point P goes through one complete cycle of oscillation in the same time; hence T is 

the period of the oscillation. During time T the point Q moves through    radians, 

so its angular speed is       . But this is just the same as Eq. (153) for the 

angular frequency of the point P, which verifies our statement about the two 

interpretations of  . This is why we introduced angular frequency early; this 

quantity makes the connection between oscillation and circular motion. So we 

reinterpret Eq. (161) as an expression for the angular frequency of simple harmonic 

motion for a body of mass m, acted on by a restoring force with force constant k: 

 

   
 

 
 

(162) 

 

When you start a body oscillating in SHM, the value of    is not yours to choose; it 

is predetermined by the values of k and m. The units of k are     or       so 

    is in               . When we take the square root in Eq. (162), we get 

    or more properly because this is an angular frequency (recall that a radian is 

not a true unit). 
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Figure 94 – The (a) x-velocity and (b) x-acceleration of the ball’s shadow   are the 

x-components of the velocity and acceleration vectors, respectively, of the ball   

 

According to Eqs. (152) and (153), the frequency and period T are 

 

  
 

  
 

 

  
 
 

 
 

(163) 

 

  
 

 
 
  

 
    

 

 
 

(164) 
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We see from Eq. (164) that a larger mass m, with its greater inertia, will have less 

acceleration, move more slowly, and take a longer time for a complete cycle (see 

fig. 95). In contrast, a stiffer spring (one with a larger force constant k) exerts a 

greater force at a given deformation x, causing greater acceleration, higher speeds, 

and a shorter time T per cycle. 

 

 
Figure 95 – The greater the mass m in a tuning fork’s tines, the lower the 

frequency of oscillation   
 

  
 

 

 
 and the lower the pitch of the sound that the 

tuning fork produces 

 

Equations (163) and (164) show that the period and frequency of simple 

harmonic motion are completely determined by the mass m and the force constant 

k. In simple harmonic motion the period and frequency do not depend on the 

amplitude A. For given values of m and k, the time of one complete oscillation is 

the same whether the amplitude is large or small. Equation (154) shows why we 

should expect this. Larger A means that the body reaches larger values of and is 

subjected to larger restoring forces. This increases the average speed of the body 
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over a complete cycle; this exactly compensates for having to travel a larger 

distance, so the same total time is involved. 

The oscillations of a tuning fork are essentially simple harmonic motion, 

which means that it always vibrates with the same frequency, independent of 

amplitude. This is why a tuning fork can be used as a standard for musical pitch. If 

it were not for this characteristic of simple harmonic motion, it would be 

impossible to make familiar types of mechanical and electronic clocks run 

accurately or to play most musical instruments in tune. If you encounter an 

oscillating body with a period that does depend on the amplitude, the oscillation is 

not simple harmonic motion. 

We still need to find the displacement x as a function of time for a harmonic 

oscillator. Equation (155) for a body in simple harmonic motion along the x-axis is 

identical to Eq. (159) for the x-coordinate of the reference point in uniform 

circular motion with constant angular speed    
 

 
 .Hence Eq. (156),   

     , describes the x-coordinate for both of these situations. If at     the 

phasor OQ makes an angle (the Greek letter phi) with the positive x-axis, 

then at any   later time t this angle is       . We substitute this into Eq. 

(156) to obtain 

 

             (165) 

 

Where    
 

 
. Figure 96 shows a graph of Eq. (165) for the particular case 

   .The displacement x is a periodic function of time, as expected for SHM. We 

could also have written Eq. (165) in terms of a sine function rather than a cosine by 

using the identity                . In simple harmonic motion the position 

is a periodic, sinusoidal function of time. There are many other periodic functions, 

but none so simple as a sine or cosine function. 

 

 
Figure 96 – Graph of x versus t for simple harmonic motion. The case shown has 
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The value of the cosine function is always between -1 and 1, so in Eq. (165), 

x is always between -A and A. This confirms that A is the amplitude of the motion. 

The period T is the time for one complete cycle of oscillation, as Fig. 96 

shows. The cosine function repeats itself whenever the quantity in parentheses in 

Eq. (165) increases by    radians. Thus, if we start at time     the time T to 

complete one cycle is given by 

 

    
 

 
     

(166) 

or 

     
 

 
 

(167) 

 

which is just Eq. (164). Changing either m or k changes the period of oscillation, as 

shown in Figs. 97a and 97b. The period does not depend on the amplitude A (see 

fig. 97c). 

 

 
Figure 97 – Variations of simple harmonic motion. All cases shown have     

 

The constant   in Eq. (165) is called the phase angle. It tells us at what 

point in the cycle the motion was at     (equivalent to where around the circle 

the point Q was at    ). We denote the position at     by   . Putting     

and      in Eq. (165), we get 

 

         (168) 

 

If     then            and the body starts at its maximum positive 

displacement. If     then             and the particle starts at its 

maximum negative displacement. If    /2 then        
 

 
   and the 

particle is initially at the origin. Figure 98 shows the displacement x versus time for 

three different phase angles. 

 



127 
 

 
Figure 98 – Variations of SHM: displacement versus time for the same harmonic 

oscillator with different phase angles   

 

 

We find the velocity and acceleration as functions of time for a harmonic 

oscillator by taking derivatives of Eq. (165) with respect to time: 

 

   
  

  
              

(169) 

 

   
   
  

 
   

   
               

(170) 

 

The velocity    oscillates between          and         , and the 

acceleration    oscillates between           and           (see fig. 99). 

Comparing Eq. (170) with Eq. (165) and recalling that    
 

 
 from Eq. (161), we 

see that 

 

         
 

 
  

(171) 

 

which is just Eq. (155) for simple harmonic motion. This confirms that Eq. (165) 

for x as a function of time is correct. 

We actually derived Eq. (170) earlier in a geometrical way by taking the x-

component of the acceleration vector of the reference point Q. This was done in 

Fig. 94b and Eq. (158) (recall that       ). In the same way, we could have 
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derived Eq. (169) by taking the x-component of the velocity vector of Q, as shown 

in Fig. 94b. We’ll leave the details for you to work out. 

Note that the sinusoidal graph of displacement versus time (see fig. 99a) is 

shifted by one-quarter period from the graph of velocity versus time (see fig. 99b) 

and by one-half period from the graph of acceleration versus time (see fig. 99c). 

Figure 91 shows why this is so. When the body is passing through the equilibrium 

position so that the displacement is zero, the velocity equals either      or       

(depending on which way the body is moving) and the acceleration is zero. When 

the body is at either its maximum positive displacement,     , or its maximum 

negative displacement,     , the velocity is zero and the body is 

instantaneously at rest. At these points, the restoring force        and the 

acceleration of the body have their maximum magnitudes. At      the 

acceleration is negative and equal to      . At the acceleration is positive: 

        . 

If we are given the initial position and initial velocity     for the oscillating 

body, we can determine the amplitude A and the phase angle  . Here’s how to do 

it. The initial velocity     is the velocity at time    ; putting        and     

in Eq. (169), we find 

 

            (172) 

 

To find   we divide Eq. (172) by Eq. (168). This eliminates A and gives an 

equation that we can solve for  : 

 
   
  

 
       

     
        

(173) 

 

          
   
   

  
(174) 

 

It is also easy to find the amplitude A if we are given    and    .We’ll 

sketch the derivation, and you can fill in the details. Square Eq. (168); then divide 

Eq. (172) by  , square it, and add to the square of Eq. (168). The right side will be 

                which is equal to   . The final result is 

 

     
  

   
 

  
 

(175) 

 

Note that when the body has both an initial displacement and a nonzero initial 

velocity the amplitude A is not equal to the initial displacement. That’s reasonable; 

if you start the body at a positive    but give it a positive velocity    , it will go 

farther than    before it turns and comes back. 
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Figure 99 – Graphs (a) x versus t, (b)    versus t, and (c)    versus t for a body in 

SHM. For the motion depicted in these graphs,       
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1.6.3 Damped and forced oscillations. Resonance 

 

The idealized oscillating systems we have discussed so far are frictionless. 

There are no nonconservative forces, the total mechanical energy is constant, and a 

system set into motion continues oscillating forever with no decrease in amplitude. 

Real-world systems always have some dissipative forces, however, and oscillations 

die out with time unless we replace the dissipated mechanical energy (see fig. 100). 

A mechanical pendulum clock continues to run because potential energy stored in 

the spring or a hanging weight system replaces the mechanical energy lost due to 

friction in the pivot and the gears. But eventually the spring runs down or the 

weights reach the bottom of their travel. Then no more energy is available, and the 

pendulum swings decrease in amplitude and stop. 

 

 
Figure 100 – A swinging bell left to itself will eventually stop oscillating due to 

damping forces (air resistance and friction at the point of suspension) 

 

The decrease in amplitude caused by dissipative forces is called damping, 

and the corresponding motion is called damped oscillation. The simplest case to 

analyze in detail is a simple harmonic oscillator with a frictional damping force 

that is directly proportional to the velocity of the oscillating body. This behavior 

occurs in friction involving viscous fluid flow, such as in shock absorbers or 

sliding between oil-lubricated surfaces. We then have an additional force on the 

body due to friction,        , where          is the velocity and b is a 

constant that describes the strength of the damping force. The negative sign shows 
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that the force is always opposite in direction to the velocity. The net force on the 

body is then 

 

            
(176) 

 

and Newton’s second law for the system is 

 

            (177) 

 

or 

 

         
   

   
 

(178) 

 

Equation (178) is a differential equation for x; it would be the same as Eq. (155), 

the equation for the acceleration in SHM, except for the added term –       . 
Solving this equation is a straightforward problem in differential equations, but we 

won’t go into the details here. If the damping force is relatively small, the motion 

is described by 

 

                       (179) 

 

The angular frequency of oscillation    is given by 

 

    
 

 
 

  

   
 

(180) 

 

You can verify that Eq. (179) is a solution of Eq. (178) by calculating the first and 

second derivatives of x, substituting them into Eq. (178), and checking whether the 

left and right sides are equal. This is a straightforward but slightly tedious 

procedure. 

The motion described by Eq. (179) differs from the undamped case in two 

ways. First, the amplitude            is not constant but decreases with time 

because of the decreasing exponential factor          . Figure 101 is a graph of 

Eq. (179) for the case     it shows that the larger the value of b, the more 

quickly the amplitude decreases. 
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Figure 101 – Graph of displacement versus time for an oscillator with little 

damping and with phase angle    . The curves are for two values of the 

damping constant   

 

Second, the angular frequency given by Eq. (180), is no longer equal to 

   
 

 
 but is somewhat smaller. It becomes zero when b becomes so large that 

 

 

 
 

  

   
 

(181) 

or 

       (182) 

 

When Eq. (182) is satisfied, the condition is called critical damping. The system 

no longer oscillates but returns to its equilibrium position without oscillation when 

it is displaced and released. 

If b is greater than     , the condition is called overdamping. Again there 

is no oscillation, but the system returns to equilibrium more slowly than with 

critical damping. For the overdamped case the solutions of Eq. (178) have the form 

 

     
        

     (183) 
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where    and    are constants that depend on the initial conditions and    and    

are constants determined by m, k, and b. 

When b is less than the critical value, as in Eq. (179), the condition is called 

underdamping. The system oscillates with steadily decreasing amplitude. In a 

vibrating tuning fork or guitar string, it is usually desirable to have as little 

damping as possible. By contrast, damping plays a beneficial role in the 

oscillations of an automobile’s suspension system. The shock absorbers provide a 

velocitydependent damping force so that when the car goes over a bump, it doesn’t 

continue bouncing forever. For optimal passenger comfort, the system should be 

critically damped or slightly underdamped. Too much damping would be 

counterproductive; if the suspension is overdamped and the car hits a second bump 

just after the first one, the springs in the suspension will still be compressed 

somewhat from the first bump and will not be able to fully absorb the impact. 

A damped oscillator left to itself will eventually stop moving altogether. But 

we can maintain a constant-amplitude oscillation by applying a force that varies 

with time in a periodic or cyclic way, with a definite period and frequency. As an 

example, consider your cousin Throckmorton on a playground swing. You can 

keep him swinging with constant amplitude by giving him a little push once each 

cycle. We call this additional force a driving force. 

If we apply a periodically varying driving force with angular frequency    

to a damped harmonic oscillator, the motion that results is called a forced 

oscillation or a driven oscillation. It is different from the motion that occurs when 

the system is simply displaced from equilibrium and then left alone, in which case 

the system oscillates with a natural angular frequency    determined by m, k, 

and b, as in Eq. (180). In a forced oscillation, however, the angular frequency with 

which the mass oscillates is equal to the driving angular frequency   . This does 

not have to be equal to the angular frequency    with which the system would 

oscillate without a driving force. If you grab the ropes of Throckmorton’s swing, 

you can force the swing to oscillate with any frequency you like. 

Suppose we force the oscillator to vibrate with an angular frequency    that 

is nearly equal to the angular frequency    it would have with no driving force. 

What happens? The oscillator is naturally disposed to oscillate at     , so we 

expect the amplitude of the resulting oscillation to be larger than when the two 

frequencies are very different. Detailed analysis and experiment show that this is 

just what happens. The easiest case to analyze is a sinusoidally varying force — 

say,                . If we vary the frequency    of the driving force, the 

amplitude of the resulting forced oscillation varies in an interesting way (see fig. 

102). When there is very little damping (small b), the amplitude goes through a 

sharp peak as the driving angular frequency    nears the natural oscillation 

angular frequency  . When the damping is increased (larger b), the peak becomes 

broader and smaller in height and shifts toward lower frequencies. 
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Figure 102 – Graph of the amplitude A of forced oscillation as a function of the 

angular frequency    of the driving force. The horizontal axis shows the ratio of 

   to the angular frequency        of an undamped oscillator. Each curve 

has a different value of the damping constant   

 

We could work out an expression that shows how the amplitude A of the 

forced oscillation depends on the frequency of a sinusoidal driving force, with 

maximum value     . That would involve more differential equations than we’re 

ready for, but here is the result: 

 

  
    

       
        

 
 

(184) 

 

When       
  the first term under the radical is zero, so A has a maximum near 

    
 

 
. The height of the curve at this point is proportional to    ; the less 

damping, the higher the peak. At the low-frequency extreme, when     , we get 

  
    

 
. This corresponds to a constant force      and a constant displacement 

  
    

 
 from equilibrium, as we might expect. 

The fact that there is an amplitude peak at driving frequencies close to the 

natural frequency of the system is called resonance. Physics is full of examples of 

resonance; building up the oscillations of a child on a swing by pushing with a 

frequency equal to the swing’s natural frequency is one. A vibrating rattle in a car 
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that occurs only at a certain engine speed or wheel-rotation speed is an all-

toofamiliar example. Inexpensive loudspeakers often have an annoying boom or 

buzz when a musical note happens to coincide with the resonant frequency of the 

speaker cone or the speaker housing. 

Resonance in mechanical systems can be destructive. A company of soldiers 

once destroyed a bridge by marching across it in step; the frequency of their steps 

was close to a natural vibration frequency of the bridge, and the resulting 

oscillation had large enough amplitude to tear the bridge apart. Ever since, 

marching soldiers have been ordered to break step before crossing a bridge. Some 

years ago, vibrations of the engines of a particular airplane had just the right 

frequency to resonate with the natural frequencies of its wings. Large oscillations 

built up, and occasionally the wings fell off. 
 

1.7 Gravitation 

 

1.7.1 Newton’s Law of Gravitation 

 

The example of gravitational attraction that’s probably most familiar to you 

is your weight, the force that attracts you toward the earth. During his study of the 

motions of the planets and of the moon, Newton discovered the fundamental 

character of the gravitational attraction between any two bodies. Along with his 

three laws of motion, Newton published the law of gravitation in 1687. It may be 

stated as follows: 

Every particle of matter in the universe attracts every other particle with a 

force that is directly proportional to the product of the masses of the particles 

and inversely proportional to the square of the distance between them. 

Translating this into an equation, we have 

 

    
    

  
 (185) 

 

where    is the magnitude of the gravitational force on either particle,    and    

are their masses, r is the distance between them (see fig. 103), and G is a 

fundamental physical constant called the gravitational constant. The numerical 

value of G depends on the system of units used. 

Equation (185) tells us that the gravitational force between two particles 

decreases with increasing distance r: If the distance is doubled, the force is only 

one-fourth as great, and so on. Although many of the stars in the night sky are far 

more massive than the sun, they are so far away that their gravitational force on the 

earth is negligibly small. 

Gravitational forces always act along the line joining the two particles, and 

they form an action–reaction pair. Even when the masses of the particles are 

different, the two interaction forces have equal magnitude (see fig. 103). The 

attractive force that your body exerts on the earth has the same magnitude as the 

force that the earth exerts on you. When you fall from a diving board into a 
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swimming pool, the entire earth rises up to meet you! (You don’t notice this 

because the earth’s mass is greater than yours by a factor of about      . Hence 

the earth’s acceleration is only       as great as yours.)  

 

 
Figure 103 – The gravitational forces between two particles of masses    and    

 

Gravitational forces are negligible between ordinary household-sized 

objects, but very substantial between objects that are the size of stars. Indeed, 

gravitation is the most important force on the scale of planets, stars, and galaxies 

(see fig. 104). It is responsible for holding our earth together and for keeping the 

planets in orbit about the sun. The mutual gravitational attraction between different 

parts of the sun compresses material at the sun’s core to very high densities and 

temperatures, making it possible for nuclear reactions to take place there. These 

reactions generate the sun’s energy output, which makes it possible for life to exist 

on earth and for you to read these words. 

The gravitational force is so important on the cosmic scale because it acts at 

a distance, without any direct contact between bodies. Electric and magnetic forces 

have this same remarkable property, but they are less important on astronomical 

scales because large accumulations of matter are electrically neutral; that is, they 

contain equal amounts of positive and negative charge. As a result, the electric and 

magnetic forces between stars or planets are very small or zero. The strong and 

weak interactions also act at a distance, but their influence is negligible at distances 

much greater than the diameter of an atomic nucleus (about        m). 
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Figure 104 – Our solar system is part a spiral galaxy like this one, which contains 

roughly      stars as well gas, dust, and other matter. The entire assemblage is 

held together by the mutual gravitational attraction of all the matter in the galaxy 

 

A useful way to describe forces that act at a distance is in terms of a field. 

One body sets up a disturbance or field at all points in space, and the force that acts 

on a second body at a particular point is its response to the first body’s field at that 

point. There is a field associated with each force that acts at a distance, and so we 

refer to gravitational fields, electric fields, magnetic fields, and so on. We won’t 

need the field concept for our study of gravitation in this chapter, so we won’t 

discuss it further here. But in later chapters we’ll find that the field concept is an 

extraordinarily powerful tool for describing electric and magnetic interactions. 

 

1.7.2 Gravitational potential energy 

 

When we first introduced gravitational potential energy, we assumed that the 

gravitational force on a body is constant in magnitude and direction. This led to the 

expression      . But the earth’s gravitational force on a body of mass m at 

any point outside the earth is given more generally by Eq.     
    

  
 where    

is the mass of the earth and r is the distance of the body from the earth’s center. 

For problems in which r changes enough that the gravitational force can’t be 
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considered constant, we need a more general expression for gravitational potential 

energy. 

To find this expression, we consider a body of mass m outside the earth, and 

first compute the work       done by the gravitational force when the body moves 

directly away from or toward the center of the earth from      to       as in 

Fig. 105. This work is given by 

 

           

  

  

 

(186) 

 

where    is the radial component of the gravitational force    —that is, the 

component in the direction outward from the center of the earth. Because    points 

directly inward toward the center of the earth, is negative. It differs from Eq. (185), 

the magnitude of the gravitational force, by a minus sign: 

 

     
    

  
 (187) 

 

Substituting Eq. (187) into Eq. (186), we see that is given by 

 

            
  

  

  

  

 
    

  
 
    

  
 

(188) 

 

The path doesn’t have to be a straight line; it could also be a curve like the one in 

Fig. 105. This work depends only on the initial and final values of r, not on the 

path taken. This also proves that the gravitational force is always conservative. 

We now define the corresponding potential energy U so that          

  , as in Eq. (80). Comparing this with Eq. (188), we see that the appropriate 

definition for gravitational potential energy is 

 

   
    

 
 

(189) 

 

Figure 106 shows how the gravitational potential energy depends on the distance r 

between the body of mass m and the center of the earth. When the body moves 

away from the earth, r increases, the gravitational force does negative work, and U 

increases (i.e., becomes less negative). When the body “falls” toward earth, r 

decreases, the gravitational work is positive, and the potential energy decreases 

(i.e., becomes more negative). 
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Figure 105 – Calculating the work done on a body by the gravitational force as the 

body moves from radial coordinate    to    

 

 
Figure 106 – A graph of the gravitational potential energy U for the system of the 

earth (mass   ) and an astronaut (mass  ) versus the astronaut’s distance   from 

the center of the earth 
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You may be troubled by Eq. (189) because it states that gravitational 

potential energy is always negative. But in fact you’ve seen negative values of U 

before. We found that U was negative whenever the body of mass m was at a value 

of y below the arbitrary height we chose to be     —that is, whenever the body 

and the earth were closer together than some certain arbitrary distance. In defining 

U by Eq. (189), we have chosen U to be zero when the body of mass m is infinitely 

far from the earth (   ). As the body moves toward the earth, gravitational 

potential energy decreases and so becomes negative. 

If we wanted, we could make at the surface of the earth, where      by 

simply adding the quantity 
    

  
 to Eq. (189). This would make U positive when 

    . We won’t do this for two reasons: One, it would make the expression for 

U more complicated; and two, the added term would not affect the difference in 

potential energy between any two points, which is the only physically significant 

quantity. Armed with Eq. (189), we can now use general energy relationships for 

problems in which the behavior of the 
 

  
 earth’s gravitational force has to be 

included. If the gravitational force on the body is the only force that does work, the 

total mechanical energy of the system is constant, or conserved. In the following 

example we’ll use this principle to calculate escape speed, the speed required for a 

body to escape completely from a planet. 

 

1.8 Fluid mechanics 

 

1.8.1 Pressure in a Fluid 

 

When a fluid (either liquid or gas) is at rest, it exerts a force perpendicular to 

any surface in contact with it, such as a container wall or a body immersed in the 

fluid. This is the force that you feel pressing on your legs when you dangle them in 

a swimming pool. While the fluid as a whole is at rest, the molecules that make up 

the fluid are in motion; the force exerted by the fluid is due to molecules colliding 

with their surroundings. 

If we think of an imaginary surface within the fluid, the fluid on the two 

sides of the surface exerts equal and opposite forces on the surface. (Otherwise, the 

surface would accelerate and the fluid would not remain at rest.) Consider a small 

surface of area dA centered on a point in the fluid; the normal force exerted by the 

fluid on each side is     (see fig. 107). We define the pressure p at that point as 

the normal force per unit area—that is, the ratio of     to dA (see fig. 108): 

 

  
   
 

 
(190) 
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Figure 107 – Forces acting on a small surface within a fluid at rest 

 

 

 
Figure 108 – The pressure on either side of a surface is force divided by area. 

Pressure is a scalar with units of newtons per square meter. By contract, force is a 

vector with units of newtons 
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If the pressure is the same at all points of a finite plane surface with area A, then  

 

  
  
 

 
(191) 

 

where is the net normal force on one side of the surface. The SI unit of pressure is 

the pascal, where 

 

                     
 

Two related units, used principally in meteorology, are the bar, equal to      and 

the millibar, equal to 100 Pa. 

Atmospheric pressure is the pressure of the earth’s atmosphere, the 

pressure at the bottom of this sea of air in which we live. This pressure varies with 

weather changes and with elevation. Normal atmospheric pressure at sea level (an 

average value) is 1 atmosphere (atm), defined to be exactly 101,325 Pa. To four 

significant figures, 

 

                                                  
 

If the weight of the fluid can be neglected, the pressure in a fluid is the same 

throughout its volume. We used that approximation in our discussion of bulk stress 

and strain. But often the fluid’s weight is not negligible. Atmospheric pressure is 

less at high altitude than at sea level, which is why an airplane cabin has to be 

pressurized when flying at 35,000 feet. When you dive into deep water, your ears 

tell you that the pressure increases rapidly with increasing depth below the surface. 

We can derive a general relationship between the pressure p at any point in a 

fluid at rest and the elevation y of the point. We’ll assume that the density has the 

same value throughout the fluid (that is, the density is uniform), as does the 

acceleration due to gravity g. If the fluid is in equilibrium, every volume element is 

in equilibrium. Consider a thin element of fluid with thickness dy (see fig. 109a). 

The bottom and top surfaces each have area A, and they are at elevations y and 

y+dy above some reference level where    . The volume of the fluid element 

is       , its mass is            , and its weight is        
     . 

What are the other forces on this fluid element (Fig 12.4b)? Let’s call the 

pressure at the bottom surface p; then the total y-component of upward force on 

this surface is pA. The pressure at the top surface is      and the total y-

component of (downward) force on the top surface is        . The fluid 

element is in equilibrium, so the total y-component of force, including the weight 

and the forces at the bottom and top surfaces, must be zero: 

 

      
(192) 
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so 

                   (193) 

 

 
 

 
Figure 109 – The forces on an element of fluid in equilibrium 
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When we divide out the area A and rearrange, we get 

 
  

  
     

(194) 

 

This equation shows that when y increases, p decreases; that is, as we move 

upward in the fluid, pressure decreases, as we expect. If    and    are the pressures 

at elevations    and   , respectively, and if   and g are constant, then 

 

                 (195) 

 

It’s often convenient to express Eq. (195) in terms of the depth below the 

surface of a fluid (see fig. 110). Take point 1 at any level in the fluid and let p 

represent the pressure at this point. Take point 2 at the surface of the fluid, where 

the pressure is (subscript zero for zero depth). The depth of point 1 below the 

surface is         and Eq. (195) becomes 

 

                     (196) 

 

or 

         (197) 

 

 
Figure 110 – How pressure varies with depth in a fluid with uniform density 
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The pressure p at a depth h is greater than the pressure    at the surface by an 

amount    . Note that the pressure is the same at any two points at the same level 

in the fluid. The shape of the container does not matter (see fig. 111). 

 

 
Figure 111 – Each fluid column has the same height, no matter what is shape 

 

Equation (197) shows that if we increase the pressure at the top surface, 

possibly by using a piston that fits tightly inside the container to push down on the 

fluid surface, the pressure p at any depth increases by exactly the same amount. 

This fact was recognized in 1653 by the French scientist Blaise Pascal (1623–

1662) and is called Pascal’s law. 

Pascal’s law: Pressure applied to an enclosed fluid is transmitted 

undiminished to every portion of the fluid and the walls of the containing 

vessel. 

The hydraulic lift shown schematically in Fig. 112 illustrates Pascal’s law. A 

piston with small cross-sectional area    exerts a force    on the surface of a liquid 

such as oil. The applied pressure   
  

  
 is transmitted through the connecting pipe 

to a larger piston of area   . The applied pressure is the same in both cylinders, so 
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(198) 

 

The hydraulic lift is a force-multiplying device with a multiplication factor equal to 

the ratio of the areas of the two pistons. Dentist’s chairs, car lifts and jacks, many 

elevators, and hydraulic brakes all use this principle. 

 

 
Figure 112 – The hydraulic lift is an application of Pascal’s law. The size of the 

fluid-filled container is exaggerated for clarity 

 

For gases the assumption that the density is uniform is realistic only over 

short vertical distances. In a room with a ceiling height of 3.0 m filled with air of 

uniform density the difference in pressure between floor and ceiling, given by Eq. 

(197), is 
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or about 0.00035 atm, a very small difference. But between sea level and the 

summit of Mount Everest (8882 m) the density of air changes by nearly a factor of 

3, and in this case we cannot use Eq. (197). Liquids, by contrast, are nearly 

incompressible, and it is usually a very good approximation to regard their density 

as independent of pressure. A pressure of several hundred atmospheres will cause 

only a few percent increase in the density of most liquids. 

 
1.8.2 Buoyancy 

 

Buoyancy is a familiar phenomenon: A body immersed in water seems to 

weigh less than when it is in air. When the body is less dense than the fluid, it 

floats. The human body usually floats in water, and a helium-filled balloon floats 

in air. 

Archimedes’s principle: When a body is completely or partially immersed in a 

fluid, the fluid exerts an upward force on the body equal to the weight of the 

fluid displaced by the body. 

To prove this principle, we consider an arbitrary element of fluid at rest. In Fig. 

113a the irregular outline is the surface boundary of this element of fluid. The 

arrows represent the forces exerted on the boundary surface by the surrounding 

fluid. 

The entire fluid is in equilibrium, so the sum of all the y-components of 

force on this element of fluid is zero. Hence the sum of the y-components of the 

surface forces must be an upward force equal in magnitude to the weight mg of the 

fluid inside the surface. Also, the sum of the torques on the element of fluid must 

be zero, so the line of action of the resultant y-component of surface force must 

pass through the center of gravity of this element of fluid. 

Now we remove the fluid inside the surface and replace it with a solid body 

having exactly the same shape (see fig. 113b). The pressure at every point is 

exactly the same as before. So the total upward force exerted on the body by the 

fluid is also the same, again equal in magnitude to the weight mg of the fluid 

displaced to make way for the body. We call this upward force the buoyant force 

on the solid body. The line of action of the buoyant force again passes through the 

center of gravity of the displaced fluid (which doesn’t necessarily coincide with the 

center of gravity of the body). 

When a balloon floats in equilibrium in air, its weight (including the gas 

inside it) must be the same as the weight of the air displaced by the balloon. A 

fish’s flesh is denser than water, yet a fish can float while submerged because it 

has a gas-filled cavity within its body. This makes the fish’s average density the 

same as water’s, so its net weight is the same as the weight of the water it 

displaces. A body whose average density is less than that of a liquid can float 

partially submerged at the free upper surface of the liquid. The greater the density 

of the liquid, the less of the body is submerged. When you swim in seawater 

(density 1030      ) density your body floats higher than in fresh water (1000 

     . 
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Figure 113 – Archimede’s principle 

 

A practical example of buoyancy is the hydrometer, used to measure the 

density of liquids (see fig. 114a). The calibrated float sinks into the fluid until the 

weight of the fluid it displaces is exactly equal to its own weight. The hydrometer 

floats higher in denser liquids than in less dense liquids, and a scale in the top stem 

permits direct density readings. Figure 114b shows a type of hydrometer that is 

commonly used to measure the density of battery acid or antifreeze. The bottom of 
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the large tube is immersed in the liquid; the bulb is squeezed to expel air and is 

then released, like a giant medicine dropper. The liquid rises into the outer tube, 

and the hydrometer floats in this sample of the liquid. 

 

 
Figure 114 – Measuring the density of a fluid 

 

An object less dense than water, such as an air-filled beach ball, floats with part of 

its volume below the surface. Conversely, a paper clip can rest atop a water surface 

even though its density is several times that of water. This is an example of 

surface tension: The surface of the liquid behaves like a membrane under tension 

(see fig. 115). Surface tension arises because the molecules of the liquid exert 

attractive forces on each other. There is zero net force on a molecule inside the 

volume of the liquid, but a surface molecule is drawn into the volume (see fig. 
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116). Thus the liquid tends to minimize its surface area, just as a stretched 

membrane does. 

 
Figure 115 – The surface of the water acts like a membrane under tension, 

allowing this water strider to literally “walk on water” 

 

 
Figure 116 – A molecule at the surface of a liquid is attracted into the bulk liquid, 

which tends reduce the liquid’s surface area 
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Surface tension explains why freely falling raindrops are spherical (not 

teardropshaped): A sphere has a smaller surface area for its volume than any other 

shape. It also explains why hot, soapy water is used for washing. To wash clothing 

thoroughly, water must be forced through the tiny spaces between the fibers (see 

fig. 117). To do so requires increasing the surface area of the water, which is 

difficult to achieve because of surface tension. The job is made easier by 

increasing the temperature of the water and adding soap, both of which decrease 

the surface tension. 

 

 
Figure 117 – Surface tension makes it difficult to force water through small 

crevices. The required water pressure p can be reduced by using hot, soapy water, 

which has less surface tension 

 

Surface tension is important for a millimeter-sized water drop, which has a 

relatively large surface area for its volume. (A sphere of radius r has surface area 

     and volume         .The ratio of surface area to volume is which increases 

with decreasing radius.) For large quantities of liquid, however, the ratio of surface 

area to volume is relatively small, and surface tension is negligible compared to 

pressure forces. For the remainder of this chapter, we will consider only fluids in 

bulk and hence will ignore the effects of surface tension. 
 

1.8.3 Fluid Flow 

 

We are now ready to consider motion of a fluid. Fluid flow can be extremely 

complex, as shown by the currents in river rapids or the swirling flames of a 

campfire. But some situations can be represented by relatively simple idealized 

models. An ideal fluid is a fluid that is incompressible (that is, its density cannot 

change) and has no internal friction (called viscosity). Liquids are approximately 

incompressible in most situations, and we may also treat a gas as incompressible if 

the pressure differences from one region to another are not too great. Internal 

friction in a fluid causes shear stresses when two adjacent layers of fluid move 

relative to each other, as when fluid flows inside a tube or around an obstacle. In 
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some cases we can neglect these shear forces in comparison with forces arising 

from gravitation and pressure differences. 

The path of an individual particle in a moving fluid is called a flow line. If 

the overall flow pattern does not change with time, the flow is called steady flow. 

In steady flow, every element passing through a given point follows the same flow 

line. In this case the “map” of the fluid velocities at various points in space remains 

constant, although the velocity of a particular particle may change in both 

magnitude and direction during its motion. A streamline is a curve whose tangent 

at any point is in the direction of the fluid velocity at that point. When the flow 

pattern changes with time, the streamlines do not coincide with the flow lines. We 

will consider only steady-flow situations, for which flow lines and streamlines are 

identical. 

The flow lines passing through the edge of an imaginary element of area, 

such as the area A in Fig. 118, form a tube called a flow tube. From the definition 

of a flow line, in steady flow no fluid can cross the side walls of a flow tube; the 

fluids in different flow tubes cannot mix. 

 

 
Figure 118 – A flow tube bounded by flow lines. In steady flow, fluid cannot 

cross the walls of a flow tube 

 

Figure 119 shows patterns of fluid flow from left to right around three 

different obstacles. The photographs were made by injecting dye into water 

flowing between two closely spaced glass plates. These patterns are typical of 

laminar flow, in which adjacent layers of fluid slide smoothly past each other and 

the flow is steady. (A lamina is a thin sheet.) At sufficiently high flow rates, or 

when boundary surfaces cause abrupt changes in velocity, the flow can become 

irregular and chaotic. This is called turbulent flow (see fig. 120). In turbulent flow 

there is no steady-state pattern; the flow pattern changes continuously. 
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Figure 119 – Laminar flow obstacles of different shapes 

 

 
Figure 120 – The flow of smoke rising from these intense sticks is laminar 

up to a certain point, and then becomes turbulent 

 

The mass of a moving fluid doesn’t change as it flows. This leads to an 

important quantitative relationship called the continuity equation. Consider a 

portion of a flow tube between two stationary cross sections with areas    and    

(see fig. 121). The fluid speeds at these sections are    and    respectively. No 

fluid flows in or out across the sides of the tube because the fluid velocity is 

tangent to the wall at every point on the wall. During a small time interval dt, the 

fluid at    moves a distance     , so a cylinder of fluid with height      and 
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volume            flows into the tube across   . During this same interval, a 

cylinder of volume            flows out of the tube across   . 

 
Figure 121 – A flow tube with changing cross-sectional area. If the fluid is 

incompressible, the product    has the same value at all points along the tube 

 

Let’s first consider the case of an incompressible fluid so that the density   

has the same value at all points. The mass     flowing into the tube across    in 

time dt is            . Similarly, the mass     that flows out across    in the 

same time is            . In steady flow the total mass in the tube is constant, 

so         and 

 

                (199) 

or 

          (200) 

 

The product is the volume flow rate the rate at which volume crosses a section of 

the tube: 
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(201) 

 

The mass flow rate is the mass flow per unit time through a cross section. This is 

equal to the density times the volume flow rate 
  

  
. 

Equation (200) shows that the volume flow rate has the same value at all 

points along any flow tube. When the cross section of a flow tube decreases, the 

speed increases, and vice versa. A broad, deep part of a river has larger cross 

section and slower current than a narrow, shallow part, but the volume flow rates 

are the same in both. This is the essence of the familiar maxim, “Still waters run 

deep.” The stream of water from a faucet narrows as it gains speed during its fall, 

but 
  

  
 is the same everywhere along the stream. If a water pipe with 2-cm diameter 

is connected to a pipe with 1-cm diameter, the flow speed is four times as great in 

the 1-cm part as in the 2-cm part. 

We can generalize Eq. (200) for the case in which the fluid is not 

incompressible. If    and are    the densities at sections 1 and 2, then 

 

            (202) 

 

If the fluid is denser at point 2 than at point 1         the volume flow rate at 

point 2 will be less than at point 1             . We leave the details to you. If 

the fluid is incompressible so that    and    are always equal, Eq. (202) reduces to 

Eq. (200). 

According to the continuity equation, the speed of fluid flow can vary along 

the paths of the fluid. The pressure can also vary; it depends on height as in the 

static situation, and it also depends on the speed of flow. We can derive an 

important relationship called Bernoulli’s equation that relates the pressure, flow 

speed, and height for flow of an ideal, incompressible fluid. Bernoulli’s equation is 

an essential tool in analyzing plumbing systems, hydroelectric generating stations, 

and the flight of airplanes. 

The dependence of pressure on speed follows from the continuity equation, 

Eq. (200). When an incompressible fluid flows along a flow tube with varying 

cross section, its speed must change, and so an element of fluid must have an 

acceleration. If the tube is horizontal, the force that causes this acceleration has to 

be applied by the surrounding fluid. This means that the pressure must be different 

in regions of different cross section; if it were the same everywhere, the net force 

on every fluid element would be zero. When a horizontal flow tube narrows and a 

fluid element speeds up, it must be moving toward a region of lower pressure in 

order to have a net forward force to accelerate it. If the elevation also changes, this 

causes an additional pressure difference. 

To derive Bernoulli’s equation, we apply the work–energy theorem to the 

fluid in a section of a flow tube. In Fig. 122 we consider the element of fluid that at 

some initial time lies between the two cross sections a and c. The speeds at the 
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lower and upper ends are and In a small time interval dt, the fluid that is initially at 

a moves to b, a distance          and the fluid that is initially at c moves to d, a 

distance         . The cross-sectional areas at the two ends are    and    as 

shown. The fluid is incompressible; hence by the continuity equation, Eq. (200), 

the volume of fluid dV passing any cross section during time dt is the same. That 

is,               . 

 

 
Figure 122 – Deriving Bernoulli’s equation. The net work done on a fluid 

equals the change in the kinetic energy plus the change in the gravitational 

potential energy 

 

Let’s compute the work done on this fluid element during dt. We assume that 

there is negligible internal friction in the fluid (i.e., no viscosity), so the only 

nongravitational forces that do work on the fluid element are due to the pressure of 

the surrounding fluid. The pressures at the two ends are    and   ; the force on the 

cross section at a is      and the force at c is     . The net work dW done on the 

element by the surrounding fluid during this displacement is therefore 
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                             (203) 

The second term has a negative sign because the force at c opposes the 

displacement of the fluid. 

The work dW  is due to forces other than the conservative force of gravity, 

so it equals the change in the total mechanical energy (kinetic energy plus 

gravitational potential energy) associated with the fluid element. The mechanical 

energy for the fluid between sections b and c does not change. At the beginning of 

dt the fluid between a and b has volume      , mass         and kinetic energy 
 

 
          

 . At the end of dt the fluid between c and d has kinetic energy 
 

 
          

 . The net change in kinetic energy dK during time dt is 

 

   
 

 
      

    
   

(204) 

 

What about the change in gravitational potential energy? At the beginning of 

dt, the potential energy for the mass between a and b is             . At the 

end of dt, the potential energy for the mass between c and d is             . 

The net change in potential energy dU during dt is 

 

               (205) 

 

Combining Eqs. (203), (204), and (205) in the energy equation          

we obtain 

 

          
 

 
      

    
               

 

(206) 

 

      
 

 
    

    
             

 

(207) 

 

This is Bernoulli’s equation. It states that the work done on a unit volume 

of fluid by the surrounding fluid is equal to the sum of the changes in kinetic and 

potential energies per unit volume that occur during the flow. We may also 

interpret Eq. (207) in terms of pressures. The first term on the right is the pressure 

difference associated with the change of speed of the fluid. The second term on the 

right is the additional pressure difference caused by the weight of the fluid and the 

difference in elevation of the two ends. 

We can also express Eq. (207) in a more convenient form as 

 

        
 

 
   

          
 

 
   

  
(208) 
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The subscripts 1 and 2 refer to any two points along the flow tube, so we can also 

write 

 

      
 

 
             

(209) 

 

Note that when the fluid is not moving (so        ) Eq. (208) reduces to the 

pressure relationship we derived for a fluid at rest, Eq. (195). 
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TOPIC 2 MOLECULAR PHYSICS AND THERMODYNAMICS 

 

 

2.1 Temperature and heat 

 

2.1.1 Temperature and thermal equilibrium 

 

The concept of temperature is rooted in qualitative ideas of “hot” and 

“cold” based on our sense of touch. A body that feels hot usually has a higher 

temperature than a similar body that feels cold. That’s pretty vague, and the senses 

can be deceived. But many properties of matter that we can measure depend on 

temperature. The length of a metal rod, steam pressure in a boiler, the ability of a 

wire to conduct an electric current, and the color of a very hot glowing object—all 

these depend on temperature. 

Temperature is also related to the kinetic energies of the molecules of a 

material. In general this relationship is fairly complex, so it’s not a good place to 

start in defining temperature. We will look at the relationship between temperature 

and the energy of molecular motion for an ideal gas. It is important to understand, 

however, that temperature and heat can be defined independently of any detailed 

molecular picture. In this section we’ll develop a macroscopic definition of 

temperature. 

To use temperature as a measure of hotness or coldness, we need to 

construct a temperature scale. To do this, we can use any measurable property of a 

system that varies with its “hotness” or “coldness.” Figure 123a shows a familiar 

system that is used to measure temperature. When the system becomes hotter, the 

colored liquid (usually mercury or ethanol) expands and rises in the tube, and the 

value of L increases. Another simple system is a quantity of gas in a constant-

volume container (see fig. 123b). The pressure p, measured by the gauge, increases 

or decreases as the gas becomes hotter or colder. A third example is the electrical 

resistance R of a conducting wire, which also varies when the wire becomes hotter 

or colder. Each of these properties gives us a number (L, p, or R) that varies with 

hotness and coldness, so each property can be used to make a thermometer. 

To measure the temperature of a body, you place the thermometer in contact 

with the body. If you want to know the temperature of a cup of hot coffee, you 

stick the thermometer in the coffee; as the two interact, the thermometer becomes 

hotter and the coffee cools off a little. After the thermometer settles down to a 

steady value, you read the temperature. The system has reached an equilibrium 

condition, in which the interaction between the thermometer and the coffee causes 

no further change in the system. We call this a state of thermal equilibrium. 

If two systems are separated by an insulating material or insulator such as 

wood, plastic foam, or fiberglass, they influence each other more slowly. Camping 

coolers are made with insulating materials to delay the ice and cold food inside 

from warming up and attaining thermal equilibrium with the hot summer air 

outside. An ideal insulator is a material that permits no interaction at all between 
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the two systems. It prevents the systems from attaining thermal equilibrium if they 

aren’t in thermal equilibrium at the start. An ideal insulator is just that, an 

idealization; real insulators, like those in camping coolers, aren’t ideal, so the 

contents of the cooler will warm up eventually. 

 

 
Figure 123 – Two devices for measuring temperature 
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The Zeroth Law of Thermodynamics. We can discover an important 

property of thermal equilibrium by considering three systems, A, B, and C, that 

initially are not in thermal equilibrium (see fig. 124). We surround them with an 

ideal insulating box so that they cannot interact with anything except each other. 

We separate systems A and B with an ideal insulating wall (the green slab in Fig. 

124a), but we let system C interact with both systems A and B. This interaction is 

shown in the figure by a yellow slab representing a thermal conductor, a material 

that permits thermal interactions through it. We wait until thermal equilibrium is 

attained; then A and B are each in thermal equilibrium with C. But are they in 

thermal equilibrium with each other? 

 

 
Figure 124 – The zeroth law of thermodynamics 
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To find out, we separate system C from systems A and B with an ideal 

insulating wall (see fig. 124b), and then we replace the insulating wall between A 

and B with a conducting wall that lets A and B interact. What happens? Experiment 

shows that nothing happens; there are no additional changes to A or B. We 

conclude: 

If C is initially in thermal equilibrium with both A and B, then A and B are 

also in thermal equilibrium with each other. This result is called the zeroth 

law of thermodynamics. 

(The importance of this law was recognized only after the first, second, and third 

laws of thermodynamics had been named. Since it is fundamental to all of them, 

the name “zeroth” seemed appropriate.) 

Now suppose system C is a thermometer, such as the liquid-in-tube system 

of Fig. 123a. In Fig. 124a the thermometer C is in contact with both A and B. In 

thermal equilibrium, when the thermometer reading reaches a stable value, the 

thermometer measures the temperature of both A and B; hence A and B both have 

the same temperature. Experiment shows that thermal equilibrium isn’t affected by 

adding or removing insulators, so the reading of thermometer C wouldn’t change if 

it were in contact only with A or only with B. We conclude: 

Two systems are in thermal equilibrium if and only if they have the same 

temperature. 

This is what makes a thermometer useful; a thermometer actually measures its own 

temperature, but when a thermometer is in thermal equilibrium with another body, 

the temperatures must be equal. When the temperatures of two systems are 

different, they cannot be in thermal equilibrium. 

 
2.1.2 Quantity of heat 

 

When you put a cold spoon into a cup of hot coffee, the spoon warms up and 

the coffee cools down as they approach thermal equilibrium. The interaction that 

causes these temperature changes is fundamentally a transfer of energy from one 

substance to another. Energy transfer that takes place solely because of a 

temperature difference is called heat flow or heat transfer, and energy transferred 

in this way is called heat. 

An understanding of the relationship between heat and other forms of energy 

emerged during the 18th and 19th centuries. Sir James Joule (1818–1889) studied 

how water can be warmed by vigorous stirring with a paddle wheel (see fig. 125a). 

The paddle wheel adds energy to the water by doing work on it, and Joule found 

that the temperature rise is directly proportional to the amount of work done. The 

same temperature change can also be caused by putting the water in contact with 

some hotter body (see fig. 125b); hence this interaction must also involve an 

energy exchange. We will explore the relationship between heat and mechanical 

energy in next chapter. 
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Figure 125 – The same temperature change of the same system may be 

accomplished by (a) doing work on it or (b) adding heat to it 

 

We can define a unit of quantity of heat based on temperature changes of 

some specific material. The calorie (abbreviated cal) is defined as the amount of 

heat required to raise the temperature of 1 gram of water from 14.5°C to 15.5°C. 

The kilocalorie (kcal), equal to 1000 cal, is also used; a food-value calorie is 

actually a kilocalorie (see fig. 126). 

Because heat is energy in transit, there must be a definite relationship 

between these units and the familiar mechanical energy units such as the joule. 

Experiments similar in concept to Joule’s have shown that 
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The calorie is not a fundamental SI unit. The International Committee on 

Weights and Measures recommends using the joule as the basic unit of energy in 

all forms, including heat. We will follow that recommendation in this book. 

 

 
Figure 126 – The word “energy” is of Greek origin. This label on a can of Greek 

coffee shows that 100 milliliters of prepared coffee have an energy content of 9.6 

kilojoules or 2.3 kilokalories 

 

We use the symbol Q for quantity of heat. When it is associated with an 

infinitesimal temperature change dT, we call it dQ. The quantity of heat Q required 

to increase the temperature of a mass m of a certain material from    to    is found 

to be approximately proportional to the temperature change         . It is 

also proportional to the mass m of material. When you’re heating water to make 

tea, you need twice as much heat for two cups as for one if the temperature change 

is the same. The quantity of heat needed also depends on the nature of the material; 

raising the temperature of 1 kilogram of water by requires 4190 J of heat, but only 

910 J is needed to raise the temperature of 1 kilogram of aluminum by 1 C°. 

Putting all these relationships together, we have 

 

       (210) 

 

where c is a quantity, different for different materials, called the specific heat of 

the material. For an infinitesimal temperature change dT and corresponding 

quantity of heat dQ, 

 

        (211) 

 

  
 

 

  

  
 

(212) 

 

In Eqs. (210), (211), and (212), Q (or dQ) and    (or dT) can be either 

positive or negative. When they are positive, heat enters the body and its 

temperature increases; when they are negative, heat leaves the body and its 

temperature decreases. 
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The specific heat of water is approximately 

 

            

          
 

The specific heat of a material always depends somewhat on the initial temperature 

and the temperature interval. Figure 127 shows this dependence for water. In the 

problems and examples in this chapter we will usually ignore this small variation. 

 

 
Figure 127 – Specific heat of water as a function of temperature. The value of c 

varies by less than 1% between 0  and 100  

 

Sometimes it’s more convenient to describe a quantity of substance in terms 

of the number of moles n rather than the mass m of material. Recall from your 

study of chemistry that a mole of any pure substance always contains the same 

number of molecules. The molar mass of any substance, denoted by M, is the mass 

per mole. (The quantity M is sometimes called molecular weight, but molar mass 

is preferable; the quantity depends on the mass of a molecule, not its weight.) For 

example, the molar mass of water is   
 

   
              ; 1 mole of water 

has a mass of              . The total mass m of material is equal to the mass 

per mole M times the number of moles n: 

 

     (213) 

 

Replacing the mass m in Eq. (210) by the product nM, we find 
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        (214) 

 

The product Mc is called the molar heat capacity (or molar specific heat) and is 

denoted by C (capitalized). With this notation we rewrite Eq. (214) as 

 

       (215) 

 

Comparing to Eq. (212), we can express the molar heat capacity C (heat per mole 

per temperature change) in terms of the specific heat c (heat per mass per 

temperature change) and the molar mass M (mass per mole): 

 

  
 

 

  

  
    

(216) 

 

For example, the molar heat capacity of water is 

 

                                              

 

Values of specific heat and molar heat capacity for several substances are given in 

Table 4. Note the remarkably large specific heat for water (see fig. 128). 

 

 
Figure 128 – Water has a much higher specific  heat than the glass or metals used 

to make cookware. This helps explain why it takes several minutes to boil water on 

a stove, even through the pot kettle reaches a high  temperature very quickly 
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Table 4 Approximate specific heats and molar heat capacities 

Substance Specific heat, 

           
Molar mass, 

M          
Molar heat 

capacity,      
       

Aluminium 910 0.027 24.6 

Beryllium 1970 0.00901 17.7 

Copper 390 0.0635 24.8 

Ethanol 2428 0.0461 111.9 

Ethylene glycol 2386 0.0620 148.0 

Ice (near   ) 2100 0.0180 37.8 

Iron 470 0.0559 26.3 

Lead 130 0.207 26.9 

Marble         879 0.100 87.9 

Mercury 138 0.201 27.7 

Salt        879 0.0585 51.4 

Silver 234 0.108 25.3 

Water (liquid) 4190 0.0180 75.4 

 

Precise measurements of specific heats and molar heat capacities require 

great experimental skill. Usually, a measured quantity of energy is supplied by an 

electric current in a heater wire wound around the specimen. The temperature 

change    is measured with a resistance thermometer or thermocouple embedded 

in the specimen. This sounds simple, but great care is needed to avoid or 

compensate for unwanted heat transfer between the sample and its surroundings. 

Measurements for solid materials are usually made at constant atmospheric 

pressure; the corresponding values are called the specific heat and molar heat 

capacity at constant pressure, denoted by    and   . For a gas it is usually easier 

to keep the substance in a container with constant volume; the corresponding 

values are called the specific heat and molar heat capacity at constant volume, 

denoted by    and   . For a given substance,    and    are different. If the system 

can expand while heat is added, there is additional energy exchange through the 

performance of work by the system on its surroundings. If the volume is constant, 

the system does no work. For gases the difference between    and    is 

substantial. 

The last column of Table 4 shows something interesting. The molar heat 

capacities for most elemental solids are about the same: about This correlation, 

named the rule of Dulong and Petit (for its discoverers), forms the basis for a very 

important idea. The number of atoms in 1 mole is the same for all elemental 

substances. This means that on a per atom basis, about the same amount of heat is 

required to raise the temperature of each of these elements by a given amount, even 

though the masses of the atoms are very different. The heat required for a given 

temperature increase depends only on how many atoms the sample contains, not on 

the mass of an individual atom. We will see the reason the rule of Dulong and Petit 
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works so well when we study the molecular basis of heat capacities in greater 

detail in next chapters. 

 
2.1.3 Phase changes 

 

We use the term phase to describe a specific state of matter, such as a solid, 

liquid, or gas. The compound exists in the solid phase as ice, in the liquid phase as 

ater, and in the gaseous phase as steam. (These are also referred to as states of 

matter: the solid state, the liquid state, and the gaseous state.) A transition from 

one phase to another is called a phase change or phase transition. For any given 

pressure a phase change takes place at a definite temperature, usually accompanied 

by absorption or emission of heat and a change of volume and density. 

A familiar example of a phase change is the melting of ice. When we add 

heat to ice at and normal atmospheric pressure, the temperature of the ice does not 

increase. Instead, some of it melts to form liquid water. If we add the heat slowly, 

to maintain the system very close to thermal equilibrium, the temperature remains 

at until all the ice is melted (see fig. 129). The effect of adding heat to this system 

is not to raise its temperature but to change its phase from solid to liquid.  

 

 
Figure 129 – The surrounding air is at room temperature, but this ice-water 

mixture remains at    until all of the ice has melted and the phase change is 

complete 
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To change 1 kg of ice at    to 1 kg of liquid water at    and normal 

atmospheric pressure requires            of heat. The heat required per unit 

mass is called the heat of fusion (or sometimes latent heat of fusion), denoted by 

  . For water at normal atmospheric pressure the heat of fusion is 

 

           
 

  
            

 

More generally, to melt a mass m of material that has a heat of fusion 

requires a quantity of heat Q given by 

 

      (217) 

 

This process is reversible. To freeze liquid water to ice at    we have to remove 

heat; the magnitude is the same, but in this case, Q is negative because heat is 

removed rather than added. To cover both possibilities and to include other kinds 

of phase changes, we write 

 

      (218) 

 

The plus sign (heat entering) is used when the material melts; the minus sign (heat 

leaving) is used when it freezes. The heat of fusion is different for different 

materials, and it also varies somewhat with pressure. 

For any given material at any given pressure, the freezing temperature is the 

same as the melting temperature. At this unique temperature the liquid and solid 

phases (liquid water and ice, for example) can coexist in a condition called phase 

equilibrium. 

We can go through this whole story again for boiling or evaporation, a phase 

transition between liquid and gaseous phases. The corresponding heat (per unit 

mass) is called the heat of vaporization   . At normal atmospheric pressure the 

heat of vaporization    for water is 

 

            
 

  
           

 

That is, it takes                to change 1 kg of liquid water at      to 1 kg 

of water vapour at     . By comparison, to raise the temperature of 1 kg of water 

from    to      requires                                  
                  , less than one-fifth as much heat as is required for vaporization 

at     . This agrees with everyday kitchen experience; a pot of water may reach 

boiling temperature in a few minutes, but it takes a much longer time to completely 

evaporate all the water away. 

Like melting, boiling is a reversible transition. When heat is removed from a 

gas at the boiling temperature, the gas returns to the liquid phase, or condenses, 



170 
 

giving up to its surroundings the same quantity of heat (heat of vaporization) that 

was needed to vaporize it. At a given pressure the boiling and condensation 

temperatures are always the same; at this temperature the liquid and gaseous 

phases can coexist in phase equilibrium. 

Both    and the boiling temperature of a material depend on pressure. Water 

boils at a lower temperature (about    ) in Denver than in Pittsburgh because 

Denver is at higher elevation and the average atmospheric pressure is lower. The 

heat of vaporization is somewhat greater at this lower pressure, about      

   
 

  
  

Table 5 lists heats of fusion and vaporization for some materials and their 

melting and boiling temperatures at normal atmospheric pressure. Very few 

elements have melting temperatures in the vicinity of ordinary room temperatures; 

one of the few is the metal gallium, shown in Fig. 130. 

 

 
Figure 130 – The metal gallium, shown here melting in a person’s hand, is one of 

the few elements that melt in the vicinity of room temperature. Its melting 

temperature is 29.8 , and its heat of fusion is               

 

Figure 131 shows how the temperature varies when we add heat 

continuously to a specimen of ice with an initial temperature below    (point a). 

The temperature rises until we reach the melting point (point b). As more heat is 

added, the temperature remains constant until all the ice has melted (point c). Then 

the temperature rises again until the boiling temperature is reached (point d). At 

that point the temperature again is constant until all the water is transformed into 

the vapor phase (point e). If the rate of heat input is constant, the line for the solid 
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phase (ice) has a steeper slope than does the line for the liquid phase (water). Do 

you see why? (see table 4) 

 

Table 5 - Heats of fusion and vaporization 

 

Substance 

Normal melting 

point 

Heat of 

fusion, 

          

Normal boiling 

point 

Heat of 

vaporization, 

                 

Helium - - - 4.216 -268.93 20.9·10
3 

Hydrogen 13.84 -259.31 58.6·10
3
 20.26 -252.89 452·10

3
 

Nitrogen 63.18 -209.97 25.5·10
3
 77.34 -195.8 201·10

3
 

Oxygen 54.36 -218.79 13.8·10
3
 90.18 -183 213·10

3
 

Ethanol 159 -114 104.2·10
3
 351 78 854·10

3
 

Mercury 234 -39 11.8·10
3
 630 357 272·10

3
 

Water 273.15 0 334·10
3
 373.15 100 2256·10

3
 

Sulfur 392 119 38.1·10
3
 717.75 444.6 326·10

3
 

Lead 600.5 327.3 24.5·10
3
 2023 1750 871·10

3
 

Antinomy 903.65 630.5 165·10
3
 1713 1440 561·10

3
 

Silver 1233.95 960.8 88.3·10
3
 2466 2193 2336·10

3
 

Gold 1336.15 1063 64.5·10
3
 2933 2660 1578·10

3
 

Copper 1356 1083 134·10
3
 1460 1187 5069·10

3
 

 

A substance can sometimes change directly from the solid to the gaseous 

phase. This process is called sublimation, and the solid is said to sublime. The 

corresponding heat is called the heat of sublimation,   . Liquid carbon dioxide 

cannot exist at a pressure lower than about       (about 5 atm), and “dry ice” 

(solid carbon dioxide) sublimes at atmospheric pressure. Sublimation of water 

from frozen food causes freezer burn. The reverse process, a phase change from 

gas to solid, occurs when frost forms on cold bodies such as refrigerator cooling 

coils. 

Very pure water can be cooled several degrees below the freezing 

temperature without freezing; the resulting unstable state is described as 

supercooled. When a small ice crystal is dropped in or the water is agitated, it 

crystallizes within a second or less. Supercooled water vapor condenses quickly 

into fog droplets when a disturbance, such as dust particles or ionizing radiation, is 

introduced. This principle is used in “seeding” clouds, which often contain 

supercooled water vapor, to cause condensation and rain. 

A liquid can sometimes be superheated above its normal boiling 

temperature. Any small disturbance such as agitation causes local boiling with 

bubble formation. 

Steam heating systems for buildings use a boiling–condensing process to 

transfer heat from the furnace to the radiators. Each kilogram of water that is 

turned to steam in the boiler absorbs over (the heat of vaporization of water) from 

the boiler and gives it up when it condenses in the radiators. Boiling–condensing 

processes are also used in refrigerators, air conditioners, and heat pumps. 
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Figure 131 – Graph of temperature versus time for a specimen of water 

initially in the solid phase (ice). Heat is added to the specimen at a constant rate. 

The temperature remains constant during each change of phase, provided that the 

pressure remains constant 

 

The temperature-control mechanisms of many warm-blooded animals make 

use of heat of vaporization, removing heat from the body by using it to evaporate 

water from the tongue (panting) or from the skin (sweating). Evaporative cooling 

enables humans to maintain normal body temperature in hot, dry desert climates 

where the air temperature may reach    . The skin temperature may be as much 

as     cooler than the surrounding air. Under these conditions a normal person 

may perspire several liters per day, and this lost water must be replaced. Old-time 

desert rats state that in the desert, any canteen that holds less than a gallon should 

be viewed as a toy! Evaporative cooling also explains why you feel cold when you 

first step out of a swimming pool (see fig. 132). 

Evaporative cooling is also used to cool buildings in hot, dry climates and to 

condense and recirculate “used” steam in coal-fired or nuclear-powered 

electricgenerating plants. That’s what goes on in the large, tapered concrete towers 

that you see at such plants. 
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Figure 132 – The water may be warm and it may be a hot day, but these 

children will feel cold when they first step out of the swimming pool. That’s 

because as water evaporates from their skin, it removes the heat of vaporization 

from their bodies. To stay warm, they will need to dry of immediately 

 

Chemical reactions such as combustion are analogous to phase changes in 

that they involve definite quantities of heat. Complete combustion of 1 gram of 

gasoline produces about 46,000 J or about 11,000 cal, so the heat of combustion 

of gasoline is 

 

                    
 

  
 

 

Energy values of foods are defined similarly. When we say that a gram of peanut 

butter “contains 6 calories,” we mean that 6 kcal of heat (6000 cal or 25000 J) is 

released when the carbon and hydrogen atoms in the peanut butter react with 

oxygen (with the help of enzymes) and are completely converted     to and    . 

Not all of this energy is directly useful for mechanical work.  

 

2.1.4 Mechanisms of heat transfer 

 

We have talked about conductors and insulators, materials that permit or 

prevent heat transfer between bodies. Now let’s look in more detail at rates of 

energy transfer. In the kitchen you use a metal or glass pot for good heat transfer 

from the stove to whatever you’re cooking, but your refrigerator is insulated with a 

material that prevents heat from flowing into the food inside the refrigerator. How 

do we describe the difference between these two materials? 
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The three mechanisms of heat transfer are conduction, convection, and 

radiation. Conduction occurs within a body or between two bodies in contact. 

Convection depends on motion of mass from one region of space to another. 

Radiation is heat transfer by electromagnetic radiation, such as sunshine, with 

noneed for matter to be present in the space between bodies. 

Conduction. If you hold one end of a copper rod and place the other end in 

a flame, the end you are holding gets hotter and hotter, even though it is not in 

direct contact with the flame. Heat reaches the cooler end by conduction through 

the material. On the atomic level, the atoms in the hotter regions have more kinetic 

energy, on the average, than their cooler neighbors. They jostle their neighbors, 

giving them some of their energy. The neighbors jostle their neighbors, and so on 

through the material. The atoms themselves do not move from one region of 

material to another, but their energy does. 

Most metals also use another, more effective mechanism to conduct heat. 

Within the metal, some electrons can leave their parent atoms and wander through 

the crystal lattice. These “free” electrons can rapidly carry energy from the hotter 

to the cooler regions of the metal, so metals are generally good conductors of heat. 

A metal rod at     feels colder than a piece of wood at     because heat can 

flow more easily from your hand into the metal. The presence of “free” electrons 

also causes most metals to be good electrical conductors. 

Heat transfer occurs only between regions that are at different temperatures, 

and the direction of heat flow is always from higher to lower temperature. Figure 

133a shows a rod of conducting material with cross-sectional area A and length L. 

The left end of the rod is kept at a temperature    and the right end at a lower 

temperature    so heat flows from left to right. The sides of the rod are covered by 

an ideal insulator, so no heat transfer occurs at the sides. 

When a quantity of heat dQ is transferred through the rod in a time dt, the 

rate of heat flow is dQ/dT. We call this rate the heat current, denoted by H. That 

is, H=dQ/dT. Experiments show that the heat current is proportional to the 

crosssectional area S of the rod (see fig. 133b) and to the temperature difference 
        and is inversely proportional to the rod length L (see fig. 133c). 

Introducing a proportionality constant k called the thermal conductivity of the 

material, we have 

 

  
  

  
   

     
 

 
(219) 

 

The quantity           is the temperature difference per unit length; it is called 

the magnitude of the temperature gradient. The numerical value of k depends on 

the material of the rod. Materials with large k are good conductors of heat; 

materials with small k are poor conductors, or insulators. Equation (219) also gives 

the heat current through a slab or through any homogeneous body with uniform 

cross section S perpendicular to the direction of flow; L is the length of the heat-

flow path. 
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The units of heat current H are units of energy per time, or power; the SI unit 

of heat current is the watt          . We can find the units of k by solving Eq. 

(219) for k; you can show that the SI units are      . Some numerical values of 

k are given in Table 6. 

 

Table 6 - Thermal conductivities 

Substance          
Metals 

Aluminium 205 

Brass 109 

Copper 385 

Lead 34.7 

Mercury 8.3 

Silver 406 

Steel 50.2 

Solids (representative values) 

Brick, insulating 0.15 

Brick, red 0.6 

Concrete 0.8 

Cork 0.04 

Felt 0.04 

Fiberglass 0.04 

Glass 0.8 

Ice 1.6 

Rock wool 0.04 

Styrofoam 0.0027 

Wood 0.12-0.14 

Gases 

Air 0.024 

Argon 0.016 

Helium 0.14 

Hydrogen 0.14 

Oxygen 0.0023 

 

The thermal conductivity of “dead” (that is, nonmoving) air is very small. A 

wool sweater keeps you warm because it traps air between the fibers. In fact, many 

insulating materials such as Styrofoam and fiberglass are mostly dead air. 

If the temperature varies in a nonuniform way along the length of the 

conducting rod, we introduce a coordinate x along the length and generalize the 

temperature gradient to be      . The corresponding generalization of Eq. (219) 

is  
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(220) 

 

The negative sign shows that heat always flows in the direction of decreasing 

temperature. 

 

 
Figure 133 – Steady-state heat flow due to conduction in a uniform rod 

 

For thermal insulation in buildings, engineers use the concept of thermal 

resistance, denoted by R. The thermal resistance R of a slab of material with area S 

is defined so that the heat current H through the slab is 

 

  
        

 
 

(221) 
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where    and    are the temperatures on the two sides of the slab. Comparing this 

with Eq. (219), we see that R is given by 

 

  
 

 
 

(222) 

 

where L is the thickness of the slab. The SI unit of R is         . 

Convection is the transfer of heat by mass motion of a fluid from one region 

of space to another. Familiar examples include hot-air and hot-water home heating 

systems, the cooling system of an automobile engine, and the flow of blood in the 

body. If the fluid is circulated by a blower or pump, the process is called forced 

convection; if the flow is caused by differences in density due to thermal 

expansion, such as hot air rising, the process is called natural convection or free 

convection (see fig. 134). 

 

 
Figure 134 – A heating in the tip of this submerged tube warms the 

surrounding water, producing a complex pattern of free convection 

 

Free convection in the atmosphere plays a dominant role in determining the 

daily weather, and convection in the oceans is an important global heat-transfer 

mechanism. On a smaller scale, soaring hawks and glider pilots make use of 

thermal updrafts from the warm earth. The most important mechanism for heat 

transfer within the human body (needed to maintain nearly constant temperature in 

various environments) is forced convection of blood, with the heart serving as the 

pump. 

Convective heat transfer is a very complex process, and there is no simple 

equation to describe it. Here are a few experimental facts:  
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1. The heat current due to convection is directly proportional to the surface 

area. This is the reason for the large surface areas of radiators and cooling fins. 

2. The viscosity of fluids slows natural convection near a stationary surface, 

giving a surface film that on a vertical surface typically has about the same 

insulating value as 1.3 cm of plywood Forced convection decreases the thickness 

of this film, increasing the rate of heat transfer. This is the reason for the “wind-

chill factor”; you get cold faster in a cold wind than in still air with the same 

temperature.  

3. The heat current due to convection is found to be approximately 

proportional to the 
 

 
 power of the temperature difference between the surface and 

the main body of fluid. 

Radiation is the transfer of heat by electromagnetic waves such as visible 

light, infrared, and ultraviolet radiation. Everyone has felt the warmth of the sun’s 

radiation and the intense heat from a charcoal grill or the glowing coals in a 

fireplace. Most of the heat from these very hot bodies reaches you not by 

conduction or convection in the intervening air but by radiation. This heat transfer 

would occur even if there were nothing but vacuum between you and the source of 

heat. 

Every body, even at ordinary temperatures, emits energy in the form of 

electromagnetic radiation. Around nearly all the energy is carried by infrared 

waves with wavelengths much longer than those of visible light (see Fig. 135). As 

the temperature rises, the wavelengths shift to shorter values. At     , a body 

emits enough visible radiation to appear “red-hot,” although even at this 

temperature most of the energy is carried by infrared waves. At      , the 

temperature of an incandescent lamp filament, the radiation contains enough 

visible light that the body appears “white-hot.” 

 

 
Figure 135 – This false-color infrared photograph reveals radiation emitted by 

various parts of the man’s body. The strongest emission (colored red) comes from 

the warmest areas, while there is very little emission from the bottle of cold 

beverage 
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The rate of energy radiation from a surface is proportional to the surface area 

S and to the fourth power of the absolute (Kelvin) temperature T. The rate also 

depends on the nature of the surface; this dependence is described by a quantity e 

called the emissivity. A dimensionless number between 0 and 1, e represents the 

ratio of the rate of radiation from a particular surface to the rate of radiation from 

an equal area of an ideal radiating surface at the same temperature. Emissivity also 

depends somewhat on temperature. Thus the heat current H=dQ/dT due to 

radiation from a surface area A with emissivity e at absolute temperature T can be 

expressed as 

 

        (223) 

 

where   is a fundamental physical constant called the Stefan–Boltzmann constant. 

This relationship is called the Stefan–Boltzmann law in honor of its late-19th-

century discoverers. The current best numerical value of   is 

 

                           
 

We invite you to check unit consistency in Eq. (223). Emissivity is often larger for 

dark surfaces than for light ones. The emissivity of a smooth copper surface is 

about 0.3, but e for a dull black surface can be close to unity. 

 

2.2 Thermal properties of matter 

 

2.2.1 Equations of state 

 

The conditions in which a particular material exists are described by 

physical quantities such as pressure, volume, temperature, and amount of 

substance. For example, a tank of oxygen in a welding outfit has a pressure gauge 

and a label stating its volume. We could add a thermometer and place the tank on a 

scale to determine its mass. These variables describe the state of the material and 

are called state variables. 

The volume V of a substance is usually determined by its pressure p, 

temperature T, and amount of substance, described by the mass        or number 

of moles n. (We are calling the total mass of a substance because later in the 

chapter we will use m for the mass of one molecule.) Ordinarily, we can’t change 

one of these variables without causing a change in another. When the tank of 

oxygen gets hotter, the pressure increases. If the tank gets too hot, it explodes. 

In a few cases the relationship among p, V, T, and m (or n) is simple enough  

hat we can express it as an equation called the equation of state. When it’s too 

complicated for that, we can use graphs or numerical tables. Even then, the 

relationship among the variables still exists; we call it an equation of state even 

when we don’t know the actual equation. 

Here’s a simple (though approximate) equation of state for a solid material. 
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The temperature coefficient of volume expansion   is the fractional volume 

change       per unit temperature change, and the compressibility k is the 

negative of the fractional volume change       per unit pressure change. If a 

certain amount of material has volume    when the pressure is    and the 

temperature is    the volume V at slightly differing pressure p and temperature T is 

approximately 

 

                        (224) 

 

(There is a negative sign in front of the term         because an increase in 

pressure causes a decrease in volume.) 

 
Figure 136 – A hypothetical setup for studying the behaviour of gases. By 

heating the gas, varying the volume with a movable piston, and adding more gas, 

we can control the gas pressure, volume, temperature and numbers of moles 
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Another simple equation of state is the one for an ideal gas. Figure 136 

shows an experimental setup to study the behavior of a gas. The cylinder has a 

movable piston to vary the volume, the temperature can be varied by heating, and 

we can pump any desired amount of any gas into the cylinder. We then measure 

the pressure, volume, temperature, and amount of gas. Note that pressure refers 

both to the force per unit area exerted by the cylinder on the gas and to the force 

per unit area exerted by the gas on the cylinder; by Newton’s third law, these must 

be equal. 

It is usually easiest to describe the amount of gas in terms of the number of 

moles n, rather than the mass. The molar mass M of a compound (sometimes 

called molecular weight) is the mass per mole, and the total mass        of a given 

quantity of that compound is the number of moles n times the mass per mole M:  

 

          (225) 

 

Hence if we know the number of moles of gas in the cylinder, we can determine 

the mass of gas using Eq. (225). 

Measurements of the behavior of various gases lead to three conclusions: 

1. The volume V is proportional to the number of moles n. If we double the 

number of moles, keeping pressure and temperature constant, the volume doubles. 

2. The volume varies inversely with the absolute pressure p. If we double the 

pressure while holding the temperature T and number of moles n constant, the gas 

compresses to one-half of its initial volume. In other words,          when n 

and T are constant. 

3. The pressure is proportional to the absolute temperature. If we double the 

absolute temperature, keeping the volume and number of moles constant, the 

pressure doubles. In other words, 
 

 
          when n and V are constant. 

These three relationships can be combined neatly into a single equation, 

called the ideal-gas equation: 

 

       (226) 

 

where R is a proportionality constant. An ideal gas is one for which Eq. (226) 

holds precisely for all pressures and temperatures. This is an idealized model; it 

works best at very low pressures and high temperatures, when the gas molecules 

are far apart and in rapid motion. It is reasonably good (within a few percent) at 

moderate pressures (such as a few atmospheres) and at temperatures well above 

those at which the gas liquefies (see fig. 137). 

 



182 
 

 
Figure 137 – The ideal-gas equation        gives a good description of the air 

inside an inflated vehicle tire, where the pressure is about 3 atmospheres and the 

temperature is much too high for nitrogen or oxygen to liquefy. As the tire warms 

(T increases), the volume V changes only slightly but the pressure p increases 

 

We might expect that the constant R in the ideal-gas equation would have 

different values for different gases, but it turns out to have the same value for 

allgases, at least at sufficiently high temperature and low pressure. It is called the 

gas constant (or ideal-gas constant). The numerical value of R depends on the 

units of p, V, and T. In SI units, in which the unit of p is Pa (           ) and 

the unit of V is   , the current best numerical value of R is 

 

              
 

     
 

 

or                 to four significant figures. Note that the units of pressure 

times volume are the same as the units of work or energy (for example,       

times   ) that’s why R has units of energy per mole per unit of absolute 

temperature. In chemical calculations, volumes are often expressed in liters (L) and 

pressures in atmospheres (atm). In this system, to four significant figures, 

 

         
     

     
 

 

 

We can express the ideal-gas equation, Eq. (226), in terms of the massof gas, using 

          from Eq. (225): 
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   (227) 

 

From this we can get an expression for the density            of the gas: 

 

  
  

  
 

(228) 

 

For a constant mass (or constant number of moles) of an ideal gas the 

product nR is constant, so the quantity 
  

 
 is also constant. If the subscripts 1 and 2 

refer to any two states of the same mass of a gas, then 

 
    
  

 
    
  

 
(229) 

 

Notice that you don’t need the value of R to use this equation. 

That may make it seem that the pressure–temperature relationship in the 

ideal-gas equation, Eq. (226), is just a result of the way we define temperature. But 

the equation also tells us what happens when we change the volume or the amount 

of substance. For now, consider Eq. (229) as being based on this genuinely 

material-independent temperature scale. 

 

2.2.2 Molecular properties of matter 

 

We have studied several properties of matter in bulk, including elasticity, 

density, surface tension, heat capacities, and equations of state. Now we want to 

look in more detail at the relationship of bulk behavior to molecular structure. We 

begin with a general discussion of the molecular structure of matter. Then in the 

next two sections we develop the kinetic-molecular model of an ideal gas, 

obtaining from this molecular model the equation of state and an expression for 

heat capacity. 

Any specific chemical compound is made up of identical molecules. The 

smallest molecules contain one atom each and are of         the order of in size; 

the largest contain many atoms and are at least 10000 times larger. In gases the 

molecules move nearly independently; in liquids and solids they are held together 

by intermolecular forces. These forces arise from interactions among the 

electrically charged particles that make up the molecules. Gravitational forces 

between molecules are negligible in comparison with electrical forces. 

The interaction of two point electric charges is described by a force 

(repulsive for like charges, attractive for unlike charges) with a magnitude 

proportional to     , where r is the distance between the points. We will study this 

relationship, called Coulomb’s law. Molecules are not point charges but complex 

structures containing both positive and negative charge, and their interactions are 

more complex. The force between molecules in a gas varies with the distance r 
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between molecules somewhat as shown in Fig. 138, where a positive    

corresponds to a repulsive force and a negative    to an attractive force. When 

molecules are far apart, the intermolecular forces are very small and usually 

attractive. As a gas is compressed and its molecules are brought closer together, the 

attractive forces increase. The intermolecular force becomes zero at an equilibrium 

spacing    corresponding roughly to the spacing between molecules in the liquid 

and solid states. In liquids and solids, relatively large pressures are needed to 

compress the substance appreciably. This shows that at molecular distances 

slightly less than the equilibrium spacing, the forces become repulsive and 

relatively large. 

 

 
Figure 138 – How the force between molecules and their energy of 

interaction depend on their r 
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Figure 138 also shows the potential energy as a function of r. This function 

has a minimum at where the force is zero. The two curves are related by       
      . Such a potential-energy function is often called a potential well. A 

molecule at rest at a distance from a second molecule would need an additional 

energy     , the “depth” of the potential well, to “escape” to an indefinitely large 
value of r. 

Molecules are always in motion; their kinetic energies usually increase with 

temperature. At very low temperatures the average kinetic energy of a molecule 

may be much less than the depth of the potential well. The molecules then 

condense into the liquid or solid phase with average intermolecular spacings of 

about   . But at higher temperatures the average kinetic energy becomes larger 

than the depth      of the potential well. Molecules can then escape the 

intermolecular force and become free to move independently, as in the gaseous 

phase of matter. 

In solids, molecules vibrate about more or less fixed points. In a crystalline 

solid these points are arranged in a crystal lattice. Figure 139 shows the cubic 

crystal structure of sodium chloride, and Fig. 140 shows a scanning tunnelling 

microscope image of individual silicon atoms on the surface of a crystal. 

 

 
Figure 139 – Schematic representation of the cubic crystal structure of 

sodium chloride (ordinary salt) 
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Figure 140 – A scanning tunnelling microscope image of the surface of a silicon 

crystal. The area shown is only 9 nm across. Each blue “bead” is an individual 

silicon atom; you can clearly see how these atoms are arranged in a (nearly) perfect 

array of hexagons 

 

The vibration of molecules in a solid about their equilibrium positions may 

be nearly simple harmonic if the potential well is approximately parabolic in shape 

at distances close to   . But if the potential-energy curve rises more gradually 

     for than for      as in Fig. 138, the average position shifts to larger r with 

increasing amplitude. This is the basis of thermal expansion. 

In a liquid, the intermolecular distances are usually only slightly greater than 

in the solid phase of the same substance, but the molecules have much greater 

freedom of movement. Liquids show regularity of structure only in the immediate 

neighborhood of a few molecules. 

The molecules of a gas are usually widely separated and so have only very 

small attractive forces. A gas molecule moves in a straight line until it collides with 

another molecule or with a wall of the container. In molecular terms, an ideal gas 

is a gas whose molecules exert no attractive forces on each other (see Fig. 141a) 

and therefore have no potential energy. 
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Figure 141 – A gas as model by (a) the ideal-gas equation and (b) the van der 

Waals equation 

 

At low temperatures, most common substances are in the solid phase. As the 

temperature rises, a substance melts and then vaporizes. From a molecular point of 

view, these transitions are in the direction of increasing molecular kinetic energy. 

Thus temperature and molecular kinetic energy are closely related. 

We have used the mole as a measure of quantity of substance. One mole of 

any pure chemical element or compound contains a definite number of molecules, 

the same number for all elements and compounds. The official SI definition is: 

One mole is the amount of substance that contains as many elementary 

entities as there are atoms in 0.012 kilogram of carbon-12. 

In our discussion, the “elementary entities” are molecules. (In a monatomic 

substance such as carbon or helium, each molecule is a single atom.) Atoms of a 

given element may occur in any of several isotopes, which are chemically identical 

but have different atomic masses; “carbon-12” is a specific isotope of carbon. 

The number of molecules in a mole is called Avogadro’s number, denoted 

by   . The current best numerical value of    is 

 

                                    
 

The molar mass M of a compound is the mass of 1 mole. It is equal to the mass m 

of a single molecule multiplied by Avogadro’s number: 

 

      (230) 

 

When the molecule consists of a single atom, the term atomic mass is often used 

instead of molar mass or molecular weight. 

 

2.2.3 Kinetic-molecular model of an ideal gas 

 

The goal of any molecular theory of matter is to understand the macroscopic 

properties of matter in terms of its atomic or molecular structure and behavior. 

Once we have this understanding, we can design materials to have specific desired 
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properties. Theories have led to the development of high-strength steels, 

semiconductor materials for electronic devices, and countless other materials 

essential to contemporary technology. 

In this and the following sections we will consider a simple molecular model 

of an ideal gas. This kinetic-molecular model represents the gas as a large number 

of particles bouncing around in a closed container. In this section we use the 

kinetic-molecular model to understand how the ideal-gas equation of state, Eq. 

(226), is related to Newton’s laws. In the following section we use the kinetic-

molecular model to predict the molar heat capacity of an ideal gas. We’ll go on to 

elaborate the model to include “particles” that are not points but have a finite size. 

Our discussion of the kinetic-molecular model has several steps, and you 

may need to go over them several times. Don’t get discouraged! 

Here are the assumptions of our model: 

1. A container with volume V contains a very large number N of identical 

molecules, each with mass m. 

2. The molecules behave as point particles that are small compared to the 

size of the container and to the average distance between molecules. 

3. The molecules are in constant motion. Each molecule collides 

occasionally 

with a wall of the container. These collisions are perfectly elastic. 

4. The container walls are rigid and infinitely massive and do not move. 

During collisions the molecules exert forces on the walls of the container; 

this is the origin of the pressure that the gas exerts. In a typical collision (see fig. 

142) the velocity component parallel to the wall is unchanged, and the component 

perpendicular to the wall reverses direction but does not change in magnitude. 

Our program is first to determine the number of collisions that occur per unit 

time for a certain area A of wall. Then we find the total momentum change 

associated with these collisions and the force needed to cause this momentum 

change. From this we can determine the pressure, which is force per unit area, and 

compare the result to the ideal-gas equation. We’ll find a direct connection 

between the temperature of the gas and the kinetic energy of the gas molecules. 

To begin, we will assume that all molecules in the gas have the same 

magnitude of x-velocity,     . This isn’t right, but making this temporary 

assumption helps to clarify the basic ideas. We will show later that this assumption 

isn’t really necessary. 

As shown in Fig. 142, for each collision the x-component of velocity 

changes from        to      . So the x-component of momentum changes from 

       to        and the change in the x-component of momentum is       
               . 
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Figure 142 – Elastic collision of a molecule with an idealized container wall 

 

If a molecule is going to collide with a given wall area A during a small time 

interval dt, then at the beginning of dt it must be within a distance from the wall 

(see fig. 143) and it must be headed toward the wall. So the number of molecules 

that collide with S during dt is equal to the number of molecules within a cylinder 

with base area S and length        that have their x-velocity aimed toward the wall. 

The volume of such a cylinder is        . Assuming that the number of molecules 

per unit volume     is uniform, the number of molecules in this cylinder is 

              . On the average, half of these molecules are moving toward the 

wall and half are moving away from it. So the number of collisions with S during 

dt is 

 
 

 
 
 

 
           

(231) 
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Figure 143 – For a molecule to strike the wall in area S during a time interval dt, 

the molecule must be headed for the wall and be within the shaded cylinder of 

length        at the beginning of the interval 

 

For the system of all molecules in the gas, the total momentum change     

during dt is the number of collisions multiplied by       : 
 

    
 

 
 
 

 
                   

     
 

 
 

(232) 

 

(We are using capital P for total momentum and small p for pressure. Be careful!) 

We wrote   
  rather than    

   in the final expression because the square of the 

absolute value of a number is equal to the square of that number. The rate of 

change of momentum component    is 

 

   
  

 
     

 

 
 

(233) 

 

According to Newton’s second law, this rate of change of momentum equals the 

force exerted by the wall area S on the gas molecules. From Newton’s third law 

this is equal and opposite to the force exerted on the wall by the molecules. 

Pressurep is the magnitude of the force exerted on the wall per unit area, and we 

obtain 
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(234) 

 

The pressure exerted by the gas depends on the number of molecules per volume 

    the mass m per molecule, and the speed of the molecules. 

 

2.2.4 Pressure and molecular kinetic energies 

 

We mentioned that      is really not the same for all the molecules. But we 

could have sorted the molecules into groups having the same      within each 

group, then added up the resulting contributions to the pressure. The net effect of 

all this is just to replace   
  in Eq. (234) by the average value of   

  which we 

denote by    
    . We can relate     

    to the speeds   of the molecules. The 

speed of a molecule is related to the velocity components       and    by 

 

     
    

    
  (235) 

 

We can average this relation over all molecules: 

 

          
        

  
  

    
     (236) 

 

But there is no real difference in our model between the x-, y-, and z-directions. 

(Molecular speeds are very fast in a typical gas, so the effects of gravity are 

negligibly small.) It follows that    
        

  
  

 and    
     must all be equal. 

Hence        is equal     
     to and 

 

       
 

 
   

     
(237) 

 

so Eq. (234) becomes 

 

   
 

 
     

     
 

 
  

 

 
         

(238) 

 

We notice that 
 

 
        is the average translational kinetic energy of a 

single molecule. The product of this and the total number of molecules N equals 

the total random kinetic energy     of translational motion of all the molecules. 

(The notation reminds us that this is the energy of translational motion. There may 

also be energies associated with molecular rotation and vibration.) The product pV 

equals two-thirds of the total translational kinetic energy: 

 

   
 

 
    

(239) 
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Now we compare this with the ideal-gas equation, 

 

       (240) 

 

which is based on experimental studies of gas behavior. For the two equations to 

agree, we must have 

 

    
 

 
    

(241) 

 

This remarkably simple result shows that     is directly proportional to the 

absolute temperature T (see fig. 144). 

 

 
Figure 144 – Summer air (left) is warmer than winter air (right); that is, the 

average translational kinetic energy of air molecules is greater in summer 

 

The average translational kinetic energy of a single molecule is the total 

translational kinetic energy of all molecules divided by the number of molecules, 

N: 

Also, the total number of molecules N is the number of moles n multiplied by 

Avogadro’s number so 

 

      (242) 
 

 
 

 

  
 

(243) 

 

and 
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(244) 

 

The ratio 
 

  
 occurs frequently in molecular theory. It is called the 

Boltzmann constant, k: 

 

  
 

  
 

             

                        
                         

 

(The current best numerical value of k is                                 

In terms of k we can rewrite Eq. (244) as 

 
 

 
        

 

 
   

(245) 

 

This shows that the average translational kinetic energy per molecule 

depends only on the temperature, not on the pressure, volume, or kind of molecule. 

We can obtain the average translational kinetic energy per mole by multiplying Eq. 

(245) by Avogadro’s number and using the relation      : 

 

  
 

 
        

 

 
        

 

 
   

(246) 

 

The translational kinetic energy of a mole of an ideal gas depends only on T. 

Finally, it is sometimes convenient to rewrite the ideal-gas equation on a 

molecular basis. We use       and       to obtain this alternative form: 

 

       (247) 

 

This shows that we can think of the Boltzmann constant k as a gas constant on a 

“per-molecule” basis instead of the usual “per-mole” basis for R. 

From Eqs. (245) and (246) we can obtain expressions for the square root of 

      , called the root-mean-square speed (or rms speed)     : 

 

              
   

 
  

   

 
 

(248) 

 

It might seem more natural to characterize molecular speeds by their average value 

rather than by      but we see that follows more directly from Eqs. (245) and 

(246). To compute the rms speed, we square each molecular speed, add, divide by 

the number of molecules, and take the square root;      is the root of the mean of 

the squares. 
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Equations (245) and (248) show that at a given temperature T, gas molecules 

of different mass m have the same average kinetic energy but different root-mean-

square speeds. On average, the nitrogen molecules              in the air 

around you are moving faster than are the oxygen molecules             . 
Hydrogen molecules are fastest of all; this is why there is hardly any hydrogen in 

the earth’s atmosphere, despite its being the most common element in the universe 

(see fig. 145). A sizable fraction of any    molecules in the atmosphere would 

have speeds greater than the earth’s escape speed of              and would 

escape into space. The heavier, slower-moving gases cannot escape so easily, 

which is why they predominate in our atmosphere. 

 

 
Figure 145 – While hydrogen is a desirable fuel for vehicles, it is only a trace 

constituent of our atmosphere (0.00005% by volume). Hence hydrogen fuel has to 

be generated by electrolysis of water, which is itself an energy-intensive process 

 

The assumption that individual molecules undergo perfectly elastic 

collisions with the container wall is actually a little too simple. More detailed 

investigation has shown that in most cases, molecules actually adhere to the wall 

for a short time and then leave again with speeds that are characteristic of the 

temperature of the wall. However, the gas and the wall are ordinarily in thermal 

equilibrium and have the same temperature. So there is no net energy transfer 

between gas and 

wall, and this discovery does not alter the validity of our conclusions. 

 
2.2.5 Phases of matter 

 

An ideal gas is the simplest system to analyze from a molecular viewpoint 

because we ignore the interactions between molecules. But those interactions are 

the very thing that makes matter condense into the liquid and solid phases under 

some conditions. So it’s not surprising that theoretical analysis of liquid and solid 
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structure and behavior is a lot more complicated than that for gases. We won’t try 

to go far here with a microscopic picture, but we can talk in general about phases 

of matter, phase equilibrium, and phase transitions. 

We learned that each phase is stable only in certain ranges of temperature 

and pressure. A transition from one phase to another ordinarily requires phase 

equilibrium between the two phases, and for a given pressure this occurs at only 

one specific temperature. We can represent these conditions on a graph with axes p 

and T, called a phase diagram; Fig. 146 shows an example. Each point on the 

diagram represents a pair of values of p and T. 

 

 
Figure 146 – A typical pT phase diagram, showing regions of temperature and 

pressure at which the various phase exist and where phase changes occur 

 

Only a single phase can exist at each point in Fig. 146, except for points on 

the solid lines, where two phases can coexist in phase equilibrium. The fusion 

curve separates the solid and liquid areas and represents possible conditions of 

solid-liquid phase equilibrium. The vaporization curve separates the liquid and 

vapor areas, and the sublimation curve separates the solid and vapor areas. All 

three curves meet at the triple point, the only condition under which all three 

phases can coexist (see fig. 147). We used the triple-point temperature of water to 

define the Kelvin temperature scale. Table 7 gives triple-point data for several 

substances. 

If we add heat to a substance at a constant pressure it goes through a series 

of states represented by the horizontal line (a) in Fig. 146. The melting and boiling 

temperatures at this pressure are the temperatures at which the line intersects the 

fusion and vaporization curves, respectively. When the pressure is constant-

pressure heating transforms a substance from solid directly to vapor. This process 

is called sublimation; the intersection of line (s) with the sublimation curve gives 

the temperature    at which it occurs for a pressure   . At any pressure less than 

the triple-point pressure, no liquid phase is possible. The triplepoint pressure for 
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carbon dioxide is 5.1 atm. At normal atmospheric pressure, solid carbon dioxide 

(“dry ice”) undergoes sublimation; there is no liquid phase at this pressure. 

 

Table 7 - Triple-point data 

Substance Temperature (K) Pressure (Pa) 

Hydrogen 13.8 0.0704·10
5 

Deuterium 18.63 0.171·10
5
 

Neon 24.56 0.432·10
5
 

Nitrogen 63.28 0.125·10
5
 

Oxygen 54.36 0.00152·10
5
 

Ammonia 195.4 0.0607·10
5
 

Carbon dioxide 216.55 5.17·10
5
 

Sulfur dioxide 197.68 0.00167·10
5
 

Water 273.26 0.0061·10
5
 

 

 
Figure 147 – Atmospheric pressure on earth is higher than the triple-point 

pressure of water. Depending on the temperature, water can exist as a vapour (in 

atmosphere), as a liquid  (in ocean), or as a solid (like the iceberg shown here) 
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Line (b) in Fig. 146 represents compression at a constant temperature   . 

The material passes from vapor to liquid and then to solid at the points where line 

(b) crosses the vaporization curve and fusion curve, respectively. Line (d) shows 

constant-temperature compression at a lower temperature   ; the material passes 

from vapor to solid at the point where line (d) crosses the sublimation curve. 

We saw in the pV-diagram of Fig. 148 that a liquid-vapor phase transition 

occurs only when the temperature and pressure are less than those at the point 

lying at the top of the green shaded area labeled “Liquid-vapor phase equilibrium 

region.” This point corresponds to the endpoint at the top of the vaporization curve 

in Fig. 146. It is called the critical point, and the corresponding values of p and T 

are called the critical pressure and temperature,    and   . A gas at a pressure 

above the critical pressure does not separate into two phases when it is cooled at 

constant pressure (along a horizontal line above the critical point in Fig. 146). 

Instead, its properties change gradually and continuously from those we ordinarily 

associate with a gas (low density, large compressibility) to those of a liquid (high 

density, small compressibility) without a phase transition. 

You can understand this by thinking about liquid-phase transitions at 

successively higher points on the vaporization curve. As we approach the critical 

point, the differences in physical properties (such as density and compressibility) 

between the liquid and vapor phases become smaller. Exactly at the critical point 

they all become zero, and at this point the distinction between liquid and vapour 

disappears. The heat of vaporization also grows smaller as we approach the critical 

point, and it too becomes zero at the critical point. 

For nearly all familiar materials the critical pressures are much greater than 

atmospheric pressure, so we don’t observe this behavior in everyday life. For 

example, the critical point for water is at 647.4 K and (about 218 atm or 3210 psi). 

But high-pressure steam boilers in electric generating plants regularly run at 

pressures and temperatures well above the critical point. 

Many substances can exist in more than one solid phase. A familiar example 

is carbon, which exists as noncrystalline soot and crystalline graphite and diamond. 

Water is another example; at least eight types of ice, differing in crystal structure 

and physical properties, have been observed at very high pressures. 

We remarked early that the equation of state of any material can be 

represented graphically as a surface in a three-dimensional space with coordinates 

p, V, and T. Visualizing such a surface can add to our understanding of the 

behaviour of materials at various temperatures and pressures. Figure 148 shows a 

typical pVT-surface. The light lines represent pV-isotherms; projecting them onto 

the pV-plane gives a diagram similar to Fig. 148. The pV-isotherms represent 

contour lines on the pVT-surface, just as contour lines on a topographic map 

represent the elevation (the third dimension) at each point. The projections of the 

edges of the surface onto the pT-plane give the pT phase diagram of Fig. 146. 

 



198 
 

 
Figure 148 – A pV-diagram fo a nonideal gas, showing isoterms for 

temperatures above and below the critical temperature. The liquid-vapor 

equilibrium region is shown as a green shaded area. At still lower temperatures the 

material might undegro phase translations from liquid to solid or from gas to solid; 

these are not shown In this diagram 

 

Line abcdef in Fig. 149 represents constant-pressure heating, with melting 

along bc and vaporization along de. Note the volume changes that occur as T 

increases along this line. Line ghjklm corresponds to an isothermal (constant 

temperature) compression, with liquefaction along hj and solidification along kl. 

Between these, segments gh and jk represent isothermal compression with increase 

in pressure; the pressure increases are much greater in the liquid region jk and the 

solid region lm than in the vapor region gh. Finally, line nopq represents isothermal 

solidification directly from vapor, as in the formation of snowflakes or frost. 

Figure 150 shows the much simpler pVT-surface for a substance that obeys 

the ideal-gas equation of state under all conditions. The projections of the constant-

temperature curves onto the pV-plane correspond to the curves of Fig. 151, and the 

projections of the constant-volume curves onto the pT-plane show that pressure is 

directly proportional to absolute temperature. 
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Figure 149 pVT-surface for a substance that expands on melting. Projections 

of the boundaries on the surface onto the pT- and pV-planes are also shown 

 

 
Figure 150 – A pVT-surface for an ideal gas. At the left, each red line corresponds 

to a certain constant volume; at the right, each green line corresponds to a certain 

constant temperature 
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Figure 151 – Isotherms, or constant-temperature curves, for a constant amount of 

an ideal gas. The highest temperature is   ; the lowest is   . This is a graphical 

representation of the ideal-gas equation of state 

 
2.3 The first law of thermodynamics 

 

2.3.1 Thermodynamics systems 

 

Every time you drive a car, turn on an air conditioner, or cook a meal, you 

reap the practical benefits of thermodynamics, the study of relationships involving 

heat, mechanical work, and other aspects of energy and energy transfer. For 

example, in a car engine heat is generated by the chemical reaction of oxygen and 

vaporized gasoline in the engine’s cylinders. The heated gas pushes on the pistons 

within the cylinders, doing mechanical work that is used to propel the car. This is 

an example of a thermodynamic process. 

The first law of thermodynamics, central to the understanding of such 

processes, is an extension of the principle of conservation of energy. It broadens 

this principle to include energy exchange by both heat transfer and mechanical 

work and introduces the concept of the internal energy of a system. Conservation 

of energy plays a vital role in every area of physical science, and the first law has 

extremely broad usefulness. To state energy relationships precisely, we need the 

concept of a thermodynamic system. We’ll discuss heat and work as two means of  

transferring energy into or out of such a system. 
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We have studied energy transfer through mechanical work and through heat 

transfer. Now we are ready to combine and generalize these principles. 

We always talk about energy transfer to or from some specific system. The 

system might be a mechanical device, a biological organism, or a specified 

quantity of material, such as the refrigerant in an air conditioner or steam 

expanding in a turbine. In general, a thermodynamic system is any collection of 

objects that is convenient to regard as a unit, and that may have the potential to 

exchange energy with its surroundings. A familiar example is a quantity of 

popcorn kernels in a pot with a lid. When the pot is placed on a stove, energy is 

added to the popcorn by conduction of heat. As the popcorn pops and expands, it 

does work as it exerts an upward force on the lid and moves it through a 

displacement. The state of the popcorn changes in this process, since the volume, 

temperature, and pressure of the popcorn all change as it pops. A process such as 

this one, in which there are changes in the state of a thermodynamic system, is 

called a thermodynamic process. 

 

 
Figure 152 – (a) A rocket engine uses the heat of combustion of its fuel to do 

work propelling the launch vehicle. (b) Humans and other biological organisms are 

more complicated system than we can analyze fully in this book, but the same 

basic principles of thermodynamics apply to them 
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In mechanics we used the concept of system with free-body diagrams and 

with conservation of energy and momentum. For thermodynamic systems, as for 

all others, it is essential to define clearly at the start exactly what is and is not 

included in the system. Only then can we describe unambiguously the energy 

transfers into and out of that system. For instance, in our popcorn example we 

defined the system to include the popcorn but not the pot, lid, or stove. 

Thermodynamics has its roots in many practical problems other than 

popping popcorn (see fig. 152). The gasoline engine in an automobile, the jet 

engines in an airplane, and the rocket engines in a launch vehicle use the heat of 

combustion of their fuel to perform mechanical work in propelling the vehicle. 

Muscle tissue in living organisms metabolizes chemical energy in food and 

performs mechanical work on the organism’s surroundings. A steam engine or 

steam turbine uses the heat of combustion of coal or other fuel to perform 

mechanical work such as driving an electric generator or pulling a train. 

 

 
Figure 153 – A thermodynamics system may exchange energy with its 

surroundings (environment) by means of heat, work or both. Note the sign 

conventions for Q and W 
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Signs for heat and work in thermodynamics. We describe the energy 

relationships in any thermodynamic process in terms of the quantity of heat Q 

added to the system and the work W done by the system. Both Q and W may be 

positive, negative, or zero (see fig. 153). A positive value of Q represents heat flow 

into the system, with a corresponding input of energy to it; negative Q represents 

heat flow out of the system. A positive value of W represents work done by the 

system against its surroundings, such as work done by an expanding gas, and hence 

corresponds to energy leaving the system. Negative W, such as work done during 

compression of a gas in which work is done on the gas by its surroundings, 

represents energy entering the system. We will use these conventions consistently 

in the examples in this chapter and the next. 

 
2.3.2 Work of gas 

 

A simple but common example of a thermodynamic system is a quantity of 

gas enclosed in a cylinder with a movable piston. Internal-combustion engines, 

steam engines, and compressors in refrigerators and air conditioners all use some 

version of such a system. In the next several sections we will use the gas-incylinder 

system to explore several kinds of processes involving energy transformations. 

We’ll use a microscopic viewpoint, based on the kinetic and potential 

energies of individual molecules in a material, to develop intuition about 

thermodynamic quantities. But it is important to understand that the central 

principles of thermodynamics can be treated in a completely macroscopic way, 

without reference to microscopic models. Indeed, part of the great power and 

generality of thermodynamics is that it does not depend on details of the structure 

of matter. 

First we consider the work done by the system during a volume change. 

When a gas expands, it pushes outward on its boundary surfaces as they move 

outward. Hence an expanding gas always does positive work. The same thing is 

true of any solid or fluid material that expands under pressure. 

We can understand the work done by a gas in a volume change by 

considering the molecules that make up the gas. When one such molecule collides 

with a stationary surface, it exerts a momentary force on the wall but does no work 

because the wall does not move. But if the surface is moving, like a piston in a 

gasoline engine, the molecule does do work on the surface during the collision. If 

the piston in Fig. 154a moves to the right, so that the volume of the gas increases, 

the molecules that strike the piston exert a force through a distance and do positive 

work on the piston. If the piston moves toward the left as in Fig. 154b, so the 

volume of the gas decreases, then positive work is done on the molecule during the 

collision. Hence the gas molecules do negative work on the piston. 
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Figure 154 – A molecule striking a piston (a) does positive work if the piston is 

moving away from the molecule and (b) does negative work if the piston is moving 

toward the molecule. Hence a gas does positive work when it expands as in (a) but 

does negative work when it compresses as in (b) 

 

 
Figure 155 – The infinitesimal work done by the system during the small 

expansion dx is         

 

Figure 155 shows a system whose volume can change (a gas, liquid, or 

solid) in a cylinder with a movable piston. Suppose that the cylinder has cross-
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sectional area A and that the pressure exerted by the system at the piston face is p. 

The total force F exerted by the system on the piston is     . When the piston 

moves out an infinitesimal distance dx, the work dW done by this force is 

 

            (249) 

 

but 

 

       (250) 

 

where dV is the infinitesimal change of volume of the system. Thus we can express 

the work done by the system in this infinitesimal volume change as 

 

       (251) 

 

In a finite change of volume from    to    

 

      

  

  

 

(252) 

 

In general, the pressure of the system may vary during the volume change. 

For example, this is the case in the cylinders of an automobile engine as the pistons 

move back and forth. To evaluate the integral in Eq. (252), we have to know how 

the pressure varies as a function of volume. We can represent this relationship as a 

graph of p as a function of V. Figure 156 a shows a simple example. In this figure, 

Eq. (252) is represented graphically as the area under the curve of p versus V 

between the limits    and   . 

According to the rule, work is positive when a system expands. In an 

expansion from state 1 to state 2 in Fig. 156a, the area under the curve and the 

work are positive. A compression from 1 to 2 in Fig. 156b gives a negative area; 

when a system is compressed, its volume decreases and it does negative work on 

its surroundings (see also Fig. 154b). 

If the pressure p remains constant while the volume changes from    to    

(see fig. 156c), the work done by the system is 

 

           (253) 

 

In any process in which the volume is constant, the system does no work because 

there is no displacement. 
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Figure 156 – The work done equals the area under the curve on a pV-diagram 

 

We’ve seen that if a thermodynamic process involves a change in volume, 

the system undergoing the process does work (either positive or negative) on its 

surroundings. Heat also flows into or out of the system during the process if there 

is a temperature difference between the system and its surroundings. Let’s now 

examine how the work done by and the heat added to the system during a 

thermodynamic process depend on the details of how the process takes place. 

When a thermodynamic system changes from an initial state to a final state, 

it passes through a series of intermediate states. We call this series of states a path. 
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There are always infinitely many different possibilities for these intermediate 

states. When they are all equilibrium states, the path can be plotted on a pV-

diagram (see fig. 157a). Point 1 represents an initial state with pressure    and 

volume    and point 2 represents a final state with pressure    and volume   . To 

pass from state 1 to state 2, we could keep the pressure constant at    while the 

system expands to volume    (point 3 in Fig. 157b), then reduce the pressure to    

(probably by decreasing the temperature) while keeping the volume constant at    

(to point 2 on the diagram). The work done by the system during this process is the 

area under the line    ; no work is done during the constant-volume process 

   . Or the system might traverse the path       (see fig. 157c); in that 

case the work is the area under the line    , since no work is done during the 

constant-volume process    . The smooth curve from 1 to 2 is another 

possibility (see fig. 157d), and the work for this path is different from that for 

either of the other paths. 

 

 
Figure 157 – The work done by a system during a transition between two states 

depends on the path chosen 

 

We conclude that the work done by the system depends not only on the initial 

and final states, but also on the intermediate states—that is, on the path. 

Furthermore, we can take the system through a series of states forming a closed 

loop, such as          . In this case the final state is the same as the 

initial state, but the total work done by the system is not zero. (In fact, it is 
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represented on the graph by the area enclosed by the loop; can you prove that?) It 

follows that it doesn’t make sense to talk about the amount of work contained in a 

system. In a particular state, a system may have definite values of the state 

coordinates p, V, and T, but it wouldn’t make sense to say that it has a definite 

value of W. 

Like work, the heat added to a thermodynamic system when it undergoes a 

change of state depends on the path from the initial state to the final state. Here’s 

an example. Suppose we want to change the volume of a certain quantity of an 

ideal gas from 2.0 L to 5.0 L while keeping the temperature constant at Figure 158 

shows two different ways in which we can do this. In Fig. 158a the gas is 

contained in a cylinder with a piston, with an initial volume of 2.0 L. We let the 

gas expand slowly, supplying heat from the electric heater to keep the temperature 

at 300 K. After expanding in this slow, controlled, isothermal manner, the gas 

reaches its final volume of 5.0 L; it absorbs a definite amount of heat in the 

process. 

 

 
Figure19.8 – (a) Slow, controlled isothermal expansion of a gas from an initial 

state 1 to a final state 2 with the same temperature bet lower pressure. (b) Rapid, 

uncontrolled expansion of the same gas starting at the same state 1 and ending at 

the same state 

 

Figure 158b shows a different process leading to the same final state. The 

container is surrounded by insulating walls and is divided by a thin, breakable 

partition into two compartments. The lower part has volume 2.0 L and the upper 

part has volume 3.0 L. In the lower compartment we place the same amount of the 

same gas as in Fig. 158a, again at The initial state is the same as before. Now we 

break the partition; the gas undergoes a rapid, uncontrolled expansion, with no heat 

passing through the insulating walls. The final volume is 5.0 L, the same as in Fig. 

158a. The gas does no work during this expansion because it doesn’t push against 
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anything that moves. This uncontrolled expansion of a gas into vacuum is called a 

free expansion. 
Experiments have shown that when an ideal gas undergoes a free expansion, 

there is no temperature change. Therefore the final state of the gas is the same as in 

Fig. 158a. The intermediate states (pressures and volumes) during the transition 

from state 1 to state 2 are entirely different in the two cases; Figs. 158a and 158b 

represent two different paths connecting the same states 1 and 2. For the path in 

Fig. 158b, no heat is transferred into the system, and the system does no work. 

Like work, heat depends not only on the initial and final states but also on the 

path. 

Because of this path dependence, it would not make sense to say that a 

system “contains” a certain quantity of heat. To see this, suppose we assign an 

arbitrary value to the “heat in a body” in some reference state. Then presumably 

the “heat in the body” in some other state would equal the heat in the reference 

state plus the heat added when the body goes to the second state. But that’s 

ambiguous, as we have just seen; the heat added depends on the path we take from 

the reference state to the second state. We are forced to conclude that there is no 

consistent way to define “heat in a body”; it is not a useful concept. 

While it doesn’t make sense to talk about “work in a body” or “heat in a 

body,” it does make sense to speak of the amount of internal energy in a body. 

This important concept is our next topic. 

 
2.3.3 Internal energy. The first law of thermodynamics 

 

Internal energy is one of the most important concepts in thermodynamics. 

When we discussed energy changes for a body sliding with friction, we stated that 

warming a body increased its internal energy and that cooling the body decreased 

its internal energy. But what is internal energy? We can look at it in various ways; 

let’s start with one based on the ideas of mechanics. Matter consists of atoms and 

molecules, and these are made up of particles having kinetic and potential energies. 

We tentatively define the internal energy of a system as the sum of the kinetic 

energies of all of its constituent particles, plus the sum of all the potential energies 

of interaction among these particles. 

We use the symbol U for internal energy. (We used this same symbol in our 

study of mechanics to represent potential energy. You may have to remind yourself 

occasionally that U has a different meaning in thermodynamics.) During a change 

of state of the system, the internal energy may change from an initial value    to a 

final value   . We denote the change in internal energy as         . 

When we add a quantity of heat Q to a system and the system does no work 

during the process (so    ), the internal energy increases by an amount equal to 

Q; that is,     . When a system does work W by expanding against its 

surroundings and no heat is added during the process, energy leaves the system and 

the internal energy decreases: W is positive, Q is zero, and      . When both 

heat transfer and work occur, the total change in internal energy is 
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             (254) 

 

We can rearrange this to the form 

 

       (255) 

 

The message of Eq. (255) is that in general, when heat Q is added to a system, 

some of this added energy remains within the system, changing its internal energy 

by an amount the remainder leaves the system again as the system does work W 

against its surroundings. Because W and Q may be positive, negative, or zero, can 

be positive, negative, or zero    for different processes (see fig. 159). 

 

 
Figure 159 – In a thermodynamic process, the internal energy   of a system may 

(a) increase (    ); (b) decrease (    ), or (c) remain the same (    ) 
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Equation (254) or (255) is the first law of thermodynamics. It is a 

generalization of the principle of conservation of energy to include energy transfer 

through heat as well as mechanical work. As you will see in later chapters, this 

principle can be extended to ever-broader classes of phenomena by identifying 

additional forms of energy and energy transfer. In every situation in which it seems 

that the total energy in all known forms is not conserved, it has been possible to 

identify a new form of energy such that the total energy, including the new form, is 

conserved. There is energy associated with electric fields, with magnetic fields, 

and, according to the theory of relativity, even with mass itself. 

At the beginning of this discussion we tentatively defined internal energy in 

terms of microscopic kinetic and potential energies. This has drawbacks, however. 

Actually calculating internal energy in this way for any real system would be 

hopelessly complicated. Furthermore, this definition isn’t an operational one 

because it doesn’t describe how to determine internal energy from physical 

quantities that we can measure directly. 

So let’s look at internal energy in another way. Starting over, we define the 

change in internal energy    during any change of a system as the quantity given 

by Eq. (254),       . This is an operational definition because we can 

measure Q and W. It does not define U itself, only   . This is not a shortcoming 

because we can define the internal energy of a system to have a specified value in 

some reference state, and then use Eq. (254) to define the internal energy in any 

other state. This is analogous to our treatment of potential energy in which we 

arbitrarily defined the potential energy of a mechanical system to be zero at a 

certain position. 

This new definition trades one difficulty for another. If we define    by Eq. 

(254), then when the system goes from state 1 to state 2 by two different paths, 

how do we know that    is the same for the two paths? We have already seen that 

Q and W are, in general, not the same for different paths. If   , which equals 

   , is also path dependent, then    is ambiguous. If so, the concept of internal 

energy of a system is subject to the same criticism as the erroneous concept of 

quantity of heat in a system. 

The only way to answer this question is through experiment. For various 

materials we measure Q and W for various changes of state and various paths to 

learn whether    is or is not path dependent. The results of many such 

investigations are clear and unambiguous: While Q and W depend on the path, 

       is independent of path. The change in internal energy of a system 

during any thermodynamic process depends only on the initial and final states, not 

on the path leading from one to the other. 

Experiment, then, is the ultimate justification for believing that a 

thermodynamic system in a specific state has a unique internal energy that depends 

only on that state. An equivalent statement is that the internal energy U of a system 

is a function of the state coordinates p, V, and T (actually, any two of these, since 

the three variables are related by the equation of state). 
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To say that the first law of thermodynamics, given by Eq. (254) or (255), 

represents conservation of energy for thermodynamic processes is correct, as far as 

it goes. But an important additional aspect of the first law is the fact that internal 

energy depends only on the state of a system (see fig. 160). In changes of state, the 

change in internal energy is independent of the path. 

 

 
Figure 160 – The internal energy of a cup of coffee depends on just its 

thermodynamic state – how much water and ground coffee it contains, and what its 

temperature is. It does not depend on the history of how the coffee was prepared – 

that is, the thermodynamic path that led to its current state 

 

All this may seem a little abstract if you are satisfied to think of internal 

energy as microscopic mechanical energy. There’s nothing wrong with that view, 

and we will make use of it at various times during our discussion. But in the 

interest of precise operational definitions, internal energy, like heat, can and must 

be defined in a way that is independent of the detailed microscopic structure of the 

material. 

Two special cases of the first law of thermodynamics are worth mentioning. 

A process that eventually returns a system to its initial state is called a cyclic 

process. For such a process, the final state is the same as the initial state, and so 

the total internal energy change must be zero. Then 

 

      (256) 

 

and 

 

    (257) 
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If a net quantity of work W is done by the system during this process, an equal 

amount of energy must have flowed into the system as heat Q. But there is no 

reason either Q or W individually has to be zero (see fig. 161). 

 

 
Figure 161 – Every day, your body (a thermodynamic system) goes through a 

cyclic thermodynamic process like this one. Heat   is added by metabolizing food, 

and your body does work   in breathing, walking, and other activities. If you 

return to the same state at the end of the day,     and the net change in your 

internal energy is zero 

 

Another special case occurs in an isolated system, one that does no work on 

its surroundings and has no heat flow to or from its surroundings. For any process 

taking place in an isolated system, 

 

      (258) 

 

and therefore 

 

           (259) 

 

In other words, the internal energy of an isolated system is constant. 

We now show that for an ideal gas, the internal energy U depends only on 

temperature, not on pressure or volume. Let’s think again about the free-expansion 
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experiment. A thermally insulated container with rigid walls is divided into two 

compartments by a partition (see fig. 162). One compartment has a quantity of an 

ideal gas and the other is evacuated. 

 

 
Figure 162 – The partition is broken (or removed) to start the free expansion of gas 

into the vacuum region 

 

When the partition is removed or broken, the gas expands to fill both parts of 

the container. The gas does no work on its surroundings because the walls of the 

container don’t move, and there is no heat flow through the insulation. So both Q 

and W are zero and the internal energy U is constant. This is true of any substance, 

whether it is an ideal gas or not. 

Does the temperature change during a free expansion? Suppose it does 

change, while the internal energy stays the same. In that case we have to conclude 

that the internal energy depends on both the temperature and the volume or on both 

the temperature and the pressure, but certainly not on the temperature alone. But if 

T is constant during a free expansion, for which we know that U is constant even 

though both p and V change, then we have to conclude that U depends only on T, 

not on p or V. 

Many experiments have shown that when a low-density gas undergoes a free 

expansion, its temperature does not change. Such a gas is essentially an ideal gas. 

The conclusion is: 

The internal energy of an ideal gas depends only on its temperature, not on its 

pressure or volume. 

This property, in addition to the ideal-gas equation of state, is part of the 

ideal gas model. Make sure you understand that U depends only on T for an ideal 

gas, for we will make frequent use of this fact. 

For nonideal gases, some temperature change occurs during free expansions, 

even though the internal energy is constant. This shows that the internal energy 

cannot depend only on temperature; it must depend on pressure as well. From the 

microscopic viewpoint, in which internal energy U is the sum of the kinetic and 

potential energies for all the particles that make up the system, this is not 
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surprising. Nonideal gases usually have attractive intermolecular forces, and when 

molecules move farther apart, the associated potential energies increase. If the total 

internal energy is constant, the kinetic energies must decrease. Temperature is 

directly related to molecular kinetic energy, and for such a gas a free expansion is 

usually accompanied by a drop in temperature. 

 
2.3.4. Kinds of thermodynamic processes 

 

In this section we describe four specific kinds of thermodynamic processes 

that occur often in practical situations. These can be summarized briefly as “no 

heat transfer” or adiabatic, “constant volume” or isochoric, “constant pressure” or 

isobaric, and “constant temperature” or isothermal. For some of these processes 

we can use a simplified form of the first law of thermodynamics. 

An adiabatic process (pronounced “ay-dee-ah-bat-ic”) is defined as one 

with no heat transfer into or out of a system;    . We can prevent heat flow eit 

er by surrounding the system with thermally insulating material or by carrying out 

the process so quickly that there is not enough time for appreciable heat flow. 

From the first law we find that for every adiabatic process, 

 

            (260) 

 

When a system expands adiabatically, W is positive (the system does work on its 

surroundings), so    is negative and the internal energy decreases. When a system 

is compressed adiabatically, W is negative (work is done on the system by its 

surroundings) and U increases. In many (but not all) systems an increase of 

internal energy is accompanied by a rise in temperature, and a decrease in internal 

energy by a drop in temperature (see fig. 163). 

The compression stroke in an internal-combustion engine is an 

approximately adiabatic process. The temperature rises as the air–fuel mixture in 

the cylinder is compressed. The expansion of the burned fuel during the power 

stroke is also an approximately adiabatic expansion with a drop in temperature. 

An isochoric process (pronounced “eye-so-kor-ic”) is a constant-volume 

process. When the volume of a thermodynamic system is constant, it does no work 

on its surroundings. Then     and 

 

           (261) 

 

In an isochoric process, all the energy added as heat remains in the system as an 

increase in internal energy. Heating a gas in a closed constant-volume container is 

an example of an isochoric process. The processes ab and cd are also examples of 

isochoric processes. (Note that there are types of work that do not involve a 

volume change. For example, we can do work on a fluid by stirring it. In some 

literature, “isochoric” is used to mean that no work of any kind is done.) 
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Figure 163 – When the cork is popped on a bottle of champagne, the pressurized 

gases inside the bottle expand rapidly and do work on the outside air      . 
There is no time for the gases to exchange heat with their surroundings, so the 

expansion is adiabatic      . Hence the internal energy of the expanding gases 

decrease           and their temperature drops. This makes water vapour 

condense and from a miniature cloud 

 

An isobaric process (pronounced “eye-so-bear-ic”) is a constant-pressure 

process. In general, none of the three quantities   , Q, and W is zero in an isobaric 

process, but calculating W is easy nonetheless. From Eq. (253), 

 

           (262) 

 

An isothermal process is a constant-temperature process. For a process to 

be isothermal, any heat flow into or out of the system must occur slowly enough 

that thermal equilibrium is maintained. In general, none of the quantities   , Q, or 

W is zero in an isothermal process. 

In some special cases the internal energy of a system depends only on its 

temperature, not on its pressure or volume. The most familiar system having this 

special property is an ideal gas, as we’ll discuss in the next section. For such 

systems, if the temperature is constant, the internal energy is also constant;      

and    . That is, any energy entering the system as heat Q must leave it again 

as work W done by the system. Involving an ideal gas, is an example of an 

isothermal process in which U is also constant. For most systems other than ideal 

gases, the internal energy depends on pressure as well as temperature, so U may 

vary even when T is constant. 

Figure 164 shows a pV-diagram for these four processes for a constant 

amount of an ideal gas. The path followed in an adiabatic process (a to 1) is 
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called an adiabat. A vertical line (constant volume) is an isochor, a horizontal 

line (constant pressure) is an isobar, and a curve of constant temperature (shown 

as light blue lines in Fig. 164) is an isotherm. 

 

 
Figure 164 – Four different processes for a constant amount of an ideal gas, all 

starting in state a. For the adiabatic process,    ; for the isochoric process, 

   ; and for the isothermal process,     . The temperature increases only 

during the isobaric expansion 

 
2.4 The second law of thermodynamics 

 

2.4.1 Heat engines 

 

The essence of our technological society is the ability to use sources of 

energy other than muscle power. Sometimes, mechanical energy is directly 

available; water power and wind power are examples. But most of our energy 

comes from the burning of fossil fuels (coal, oil, and gas) and from nuclear 

reactions. They supply energy that is transferred as heat. This is directly useful for 

heating buildings, for cooking, and for chemical processing, but to operate a 

machine or propel a vehicle, we need mechanical energy. 



218 
 

Thus it’s important to know how to take heat from a source and convert as 

much of it as possible into mechanical energy or work. This is what happens in 

gasoline engines in automobiles, jet engines in airplanes, steam turbines in electric 

power plants, and many other systems. Closely related processes occur in the 

animal kingdom; food energy is “burned” (that is, carbohydrates combine with 

oxygen to yield water, carbon dioxide, and energy) and partly converted to 

mechanical energy as an animal’s muscles do work on its surroundings. 

Any device that transforms heat partly into work or mechanical energy is 

called a heat engine (see fig. 165). Usually, a quantity of matter inside the engine 

undergoes inflow and outflow of heat, expansion and compression, and sometimes 

change of phase. We call this matter the working substance of the engine. In 

internal-combustion engines, such as those used in automobiles, the working 

substance is a mixture of air and fuel; in a steam turbine it is water. 

 

 
Figure 165 – All motorized vehicles other than purely electric vehicles use heat 

engines for propulsion. (Hybrid vehicles use their internal-combustion engine to 

help change the batteries for the electric motor) 

 

The simplest kind of engine to analyze is one in which the working 

substance undergoes a cyclic process, a sequence of processes that eventually 

leaves the substance in the same state in which it started. In a steam turbine the 

water is recycled and used over and over. Internal-combustion engines do not use 

the same air over and over, but we can still analyze them in terms of cyclic 

processes that approximate their actual operation. 
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All heat engines absorb heat from a source at a relatively high temperature, 

perform some mechanical work, and discard or reject some heat at a lower 

temperature. As far as the engine is concerned, the discarded heat is wasted. In 

internal-combustion engines the waste heat is that discarded in the hot exhaust 

gases and the cooling system; in a steam turbine it is the heat that must flow out of 

the used steam to condense and recycle the water. 

When a system is carried through a cyclic process, its initial and final 

internal energies are equal. For any cyclic process, the first law of thermodynamics 

requires that  

 

            (263) 

 

so 

 

    (264) 

 

That is, the net heat flowing into the engine in a cyclic process equals the net work 

done by the engine. 

When we analyze heat engines, it helps to think of two bodies with which 

the working substance of the engine can interact. One of these, called the hot 

reservoir, represents the heat source; it can give the working substance large 

amounts of heat at a constant temperature    without appreciably changing its own 

temperature. The other body, called the cold reservoir, can absorb large amounts of 

discarded heat from the engine at a constant lower temperature   . In a steam-

turbine system the flames and hot gases in the boiler are the hot reservoir, and the 

cold water and air used to condense and cool the used steam are the cold reservoir. 

We denote the quantities of heat transferred from the hot and cold reservoirs 

as    and    respectively. A quantity of heat Q is positive when heat is transferred 

into the working substance and is negative when heat leaves the working 

substance. Thus in a heat engine,    is positive but    is negative, representing 

heat leaving the working substance. This sign convention is consistent with the 

rules; we will continue to use those rules here. For clarity, we’ll often state the 

relationships in terms of the absolute values of the Q’s and W’s because absolute 

values are always positive. 

We can represent the energy transformations in a heat engine by the energy-

flow diagram of Fig. 166. The engine itself is represented by the circle. The 

amount of heat    supplied to the engine by the hot reservoir is proportional to the 

width of the incoming “pipeline” at the top of the diagram. The width of the 

outgoing pipeline at the bottom is proportional to the magnitude      of the heat 

rejected in the exhaust. The branch line to the right represents the portion of the 

heat supplied that the engine converts to mechanical work, W. 
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Figure 166 – Schematic energy-flow diagram for a heat engine 

 

When an engine repeats the same cycle over and over,    and    represent 

the quantities of heat absorbed and rejected by the engine during one cycle;    is 

positive, and    is negative. The net heat Q absorbed per cycle is 

 

                  (265) 

 

The useful output of the engine is the net work W done by the working substance. 

From the first law, 

 

                    (266) 

 

Ideally, we would like to convert all the heat    into work; in that case we would 

have      and     . Experience shows that this is impossible; there is 

always some heat wasted, and    is never zero. We define the thermal efficiency 

of an engine, denoted by e, as the quotient 

 

  
 

  
 

(267) 
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The thermal efficiency e represents the fraction of    that is converted to work. To 

put it another way, e is what you get divided by what you pay for. This is always 

less than unity, an all-too-familiar experience! In terms of the flow diagram of Fig. 

166, the most efficient engine is one for which the branch pipeline representing the 

work output is as wide as possible and the exhaust pipeline representing the heat 

thrown away is as narrow as possible. 

When we substitute the two expressions for W given by Eq. (266) into Eq. 

(267), we get the following equivalent expressions for e: 

 

  
 

  
   

  

  
    

  

  
  

(268) 

 

Note that e is a quotient of two energy quantities and thus is a pure number, 

without units. Of course, we must always express W,    and    in the same units. 

 
2.4.2 The Second law of thermodynamics 

 

Experimental evidence suggests strongly that it is impossible to build a heat 

engine that converts heat completely to work—that is, an engine with 100% 

thermal efficiency. This impossibility is the basis of one statement of the second 

law of thermodynamics, as follows: 

It is impossible for any system to undergo a process in which it absorbs heat 

from a reservoir at a single temperature and converts the heat completely into 

mechanical work, with the system ending in the same state in which it began. 

We will call this the “engine” statement of the second law. (It is also known to 

physicists as the Kelvin–Planck statement of this law.) 

The basis of the second law of thermodynamics is the difference between the 

nature of internal energy and that of macroscopic mechanical energy. In a moving 

body the molecules have random motion, but superimposed on this is a coordinated 

motion of every molecule in the direction of the body’s velocity. The kinetic 

energy associated with this coordinated macroscopic motion is what we call the 

kinetic energy of the moving body. The kinetic and potential energies associated 

with the random motion constitute the internal energy. 

When a body sliding on a surface comes to rest as a result of friction, the 

organized motion of the body is converted to random motion of molecules in the 

body and in the surface. Since we cannot control the motions of individual 

molecules, we cannot convert this random motion completely back to organized 

motion. We can convert part of it, and this is what a heat engine does. 

If the second law were not true, we could power an automobile or run a 

power plant by cooling the surrounding air. Neither of these impossibilities 

violates the first law of thermodynamics. The second law, therefore, is not a 

deduction from the first but stands by itself as a separate law of nature. The first 

law denies the possibility of creating or destroying energy; the second law limits 

the availability of energy and the ways in which it can be used and converted. 
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Heat flows spontaneously from hotter to colder bodies, never the reverse. A 

refrigerator does take heat from a colder to a hotter body, but its operation requires 

an input of mechanical energy or work. Generalizing this observation, we state: 

It is impossible for any process to have as its sole result the transfer of heat 

from a cooler to a hotter body. 

We’ll call this the “refrigerator” statement of the second law. (It is also known as 

the Clausius statement.) It may not seem to be very closely related to the “engine” 

statement. In fact, though, the two statements are completely equivalent. For 

example, if we could build a workless refrigerator, violating the second or 

“refrigerator” statement of the second law, we could use it in conjunction with a 

heat engine, pumping the heat rejected by the engine back to the hot reservoir to be 

reused. This composite machine (see fig. 167a) would violate the “engine” 

statement of the second law because its net effect would be to take a net quantity of 

heat         from the hot reservoir and convert it completely to work W. 

Alternatively, if we could make an engine with 100% thermal efficiency, in 

violation of the first statement, we could run it using heat from the hot reservoir 

and use the work output to drive a refrigerator that pumps heat from the cold 

reservoir to the hot (see fig. 167b). This composite device would violate the 

“refrigerator” statement because its net effect would be to take heat    from the 

cold reservoir and deliver it to the hot reservoir without requiring any input of 

work. Thus any device that violates one form of the second law can be used 

tomake a device that violates the other form. If violations of the first form are 

impossible, so are violations of the second! 

The conversion of work to heat and the heat flow from hot to cold across a 

finite temperature gradient are irreversible processes. The “engine” and 

“refrigerator” statements of the second law state that these processes can be only 

partially reversed. We could cite other examples. Gases naturally flow from a 

region of high pressure to a region of low pressure; gases and miscible liquids left 

by themselves always tend to mix, not to unmix. The second law of 

thermodynamics is an expression of the inherent one-way aspect of these and many 

other irreversible processes. Energy conversion is an essential aspect of all plant 

and animal life and of human technology, so the second law of thermodynamics is 

of fundamental importance. 

The second law of thermodynamics, as we have stated it, is not an equation 

or a quantitative relationship but rather a statement of impossibility. However, the 

second law can be stated as a quantitative relationship with the concept of entropy, 

the subject of this section. 
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Figure 167 – Energy-flow diagrams showing that the two forms of the second law 

are equivalent 

 

We have talked about several processes that proceed naturally in the 

direction of increasing disorder. Irreversible heat flow increases disorder because 

the molecules are initially sorted into hotter and cooler regions; this sorting is lost 

when the system comes to thermal equilibrium. Adding heat to a body increases its 

disorder because it increases average molecular speeds and therefore the 

randomness of molecular motion. Free expansion of a gas increases its disorder 

because the molecules have greater randomness of position after the expansion 

than before. Figure 168 shows another process in which disorder increases. 

 



224 
 

 
Figure 168 – When firecrackers explode, disorder increases. The neatly 

packaged chemicals within each firecracker are dispersed in all directions and the 

stored chemical energy is converted to random kinetic energy of the fragments 

 

Entropy provides a quantitative measure of disorder. To introduce this 

concept, let’s consider an infinitesimal isothermal expansion of an ideal gas. We 

add heat dQ and let the gas expand just enough to keep the temperature constant. 

Because the internal energy of an ideal gas depends only on its temperature, the 

internal energy is also constant; thus from the first law, the work dW done by the 

gas is equal to the heat dQ added. That is, 
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(270) 

 

The gas is more disordered after the expansion than before: The molecules are 

moving in a larger volume and have more randomness of position. Thus the 

fractional volume change dV/V is a measure of the increase in disorder, and the 

above equation shows that it is proportional to the quantity dQ/T We introduce the 

symbol S for the entropy of the system, and we define the infinitesimal entropy 

change dS during an infinitesimal reversible process at absolute temperature T as 

 

   
  

 
 

(271) 
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If a total amount of heat Q is added during a reversible isothermal process at 

absolute temperature T, the total entropy change          is given by 

 

         
 

 
 

(272) 

 

Entropy has units of energy divided by temperature; the SI unit of entropy is     
 . 

We can see how the quotient     is related to the increase in disorder. 

Higher temperature means greater randomness of motion. If the substance is 

initially cold, with little molecular motion, adding heat Q causes a substantial 

fractional increase in molecular motion and randomness. But if the substance is 

already hot, the same quantity of heat adds relatively little to the greater molecular 

motion already present. So     is an appropriate characterization of the increase 

in randomness or disorder when heat flows into a system. 

We can generalize the definition of entropy change to include any reversible 

process leading from one state to another, whether it is isothermal or not. We 

represent the process as a series of infinitesimal reversible steps. During a typical 

step, an infinitesimal quantity of heat dQ is added to the system at absolute 

temperature T. Then we sum (integrate) the quotients dQ/T for the entire process; 

that is, 

 

    
  

 

 

 

 

(273) 

 

The limits 1 and 2 refer to the initial and final states. 

Because entropy is a measure of the disorder of a system in any specific 

state, it must depend only on the current state of the system, not on its past history. 

(We will verify this later.) When a system proceeds from an initial state with 

entropy    to a final state with entropy   , the change in entropy          

defined by Eq. (273) does not depend on the path leading from the initial to the 

final state but is the same for all possible processes leading from state 1 to state 2. 

Thus the entropy of a system must also have a definite value for any given state of 

the system. Internal energy also has this property, although entropy and internal 

energy are very different quantities. 

Since entropy is a function only of the state of a system, we can also 

compute entropy changes in irreversible (nonequilibrium) processes for which 

Eqs. (271) and (273) are not applicable. We simply invent a path connecting the 

given initial and final states that does consist entirely of reversible equilibrium 

processes and compute the total entropy change for that path. It is not the actual 

path, but the entropy change must be the same as for the actual path. 
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As with internal energy, the above discussion does not tell us how to 

calculate entropy itself, but only the change in entropy in any given process. Just as 

with internal energy, we may arbitrarily assign a value to the entropy of a system 

in a specified reference state and then calculate the entropy of any other state with 

reference to this. 

Total entropy change for a cycle of a particular Carnot engine, which uses an 

ideal gas as its working substance, is zero. This result follows directly from Eq. 

(283), which we can rewrite as 

 
  

  
 
  

  
   

(274) 

 

The quotient 
  

  
 equals    , the entropy change of the engine that occurs at 

    . Likewise, 
  

  
 equals     the (negative) entropy change of the engine that 

occurs at     . Hence Eq. (274) says that that          ; is, there is zero 

net entropy change in one cycle. 

What about Carnot engines that use a different working substance? 

According to the second law, any Carnot engine operating between given 

temperatures    and    has the same efficiency           [Eq. (284)]. 

Combining this expression for e with Eq. (268),           just reproduces 

Eq. (274). So Eq. (274) is valid for any Carnot engine working between these 

temperatures, whether its working substance is an ideal gas or not. We conclude 

that the total entropy change in one cycle of any Carnot engine is zero. 

This result can be generalized to show that the total entropy change during 

any reversible cyclic process is zero. A reversible cyclic process appears on a 

pVdiagram as a closed path (see fig. 20.19a). We can approximate such a path as 

closely as we like by a sequence of isothermal and adiabatic processes forming 

parts of many long, thin Carnot cycles (see fig. 20.19b). The total entropy change 

for the full cycle is the sum of the entropy changes for each small Carnot cycle, 

each of which is zero. So the total entropy change during any reversible cycle is 

zero: 

 

 
  

 
   

(275) 

 

It follows that when a system undergoes a reversible process leading from 

any state a to any other state b, the entropy change of the system is independent of 

the path (see fig. 20.19c). If the entropy change for path 1 were different from the 

change for path 2, the system could be taken along path 1 and then backward along 

path 2 to the starting point, with a nonzero net change in entropy. This would 

violate the conclusion that the total entropy change in such a cyclic process must 

be zero. Because the entropy change in such processes is independent of path, we 
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conclude that in any given state, the system has a definite value of entropy that 

depends only on the state, not on the processes that led to that state. 

 

 
Figure 169 – (a) A reversible cyclic process for an ideal gas a red closed 

path on a pV-diagram. Several ideal-gas isotherms are shown in blue. (b) We can 

approximate the path in (a) by a series of long, thin Carnot cycles; one of these in 

highlighted in gold. The total entropy change is zero for each Carnot cycle and for 

the actual cyclic process. (c) The entropy change between points a and b is 

independent of the path 

 

In an idealized, reversible process involving only equilibrium states, the total 

entropy change of the system and its surroundings is zero. But all irreversible 

processes involve an increase in entropy. Unlike energy, entropy is not a conserved 

quantity. The entropy of an isolated system can change, but as we shall see, it can 

never decrease. The free expansion of a gas is an irreversible process in an isolated 

system in which there is an entropy increase. 
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2.4.3 The Carnot cycle 

 

According to the second law, no heat engine can have 100% efficiency. How 

great an efficiency can an engine have, given two heat reservoirs at temperatures 

   and   ? This question was answered in 1824 by the French engineer Sadi 

Carnot (1796–1832), who developed a hypothetical, idealized heat engine that has 

the maximum possible efficiency consistent with the second law. The cycle of this 

engine is called the Carnot cycle. 

To understand the rationale of the Carnot cycle, we return to reversibility 

and its relationship to directions of thermodynamic processes. Conversion of work 

to heat is an irreversible process; the purpose of a heat engine is a partial reversal 

of this process, the conversion of heat to work with as great an efficiency as 

possible. For maximum heat-engine efficiency, therefore, we must avoid all 

irreversible processes (see fig. 20.12). 

 

 
Figure 170 – The temperature of the firebox of a steam engine is much higher than 

the temperature of water in the boiler, so heat flows irreversibly from firebox to 

water. Carnot’s quest to understand the efficiency of steam engines led him to the 

idea that an ideal engine would involve only reversible processes 

 

Heat flow through a finite temperature drop is an irreversible process. 

Therefore, during heat transfer in the Carnot cycle there must be no finite 

temperature difference. When the engine takes heat from the hot reservoir at 

temperature   , the working substance of the engine must also be at    otherwise, 

irreversible heat flow would occur. Similarly, when the engine discards heat to the 
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cold reservoir at    the engine itself must be at   . That is, every process that 

involves heat transfer must be isothermal at either    or   . 

Conversely, in any process in which the temperature of the working 

substance of the engine is intermediate between    and    there must be no heat 

transfer between the engine and either reservoir because such heat transfer could 

not be reversible. Therefore any process in which the temperature T of the working 

substance changes must be adiabatic. 

The bottom line is that every process in our idealized cycle must be either 

isothermal or adiabatic. In addition, thermal and mechanical equilibrium must be 

maintained at all times so that each process is completely reversible. 

The Carnot cycle consists of two reversible isothermal and two reversible 

adiabatic processes. Figure 171 shows a Carnot cycle using as its working 

substance an ideal gas in a cylinder with a piston. It consists of the following steps: 

1. The gas expands isothermally at temperature   , absorbing heat    (ab) 

2. It expands adiabatically until its temperature drops to    (bc) 

3. It is compressed isothermally at   , rejecting heat      (cd) 

4. It is compressed adiabatically back to its initial state at temperature    

(da). 

We can calculate the thermal efficiency e of a Carnot engine in the special 

case shown in Fig. 20.13 in which the working substance is an ideal gas. To carry 

out this calculation, we will first find the ratio       of the quantities of heat 

transferred in the two isothermal processes and then use Eq. (268) to find e. 

 

 
Figure 171 – The Carnot cycle for an ideal gas. The light blue lines in the pV-

diagram are isotherms (curves of constant temperature) and the dark blue lines are 

adiabats (curves of zero heat flow) 
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For an ideal gas the internal energy U depends only on temperature and is 

thus constant in any isothermal process. For the isothermal expansion ab,      
  and    is equal to the work     done by the gas during its isothermal expansion 

at temperature   . We calculated this work; using that result, we have 

 

             
  
  

 
(276) 

 

Similarly, 
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Because    is less than       is negative           ; heat flows out of the gas 

during the isothermal compression at temperature   . 

The ratio of the two quantities of heat is thus 

 

  

  
   

  
  
 
  

  
  

  
  
  

 

(278) 

 

This can be simplified further by use of the temperature–volume relationship for an 

adiabatic process,     
   

     
   

. We find for the two adiabatic processes: 
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and 
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Dividing the first of these by the second, we find 
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and 
  
  

 
  
  

 
(282) 

 

Thus the two logarithms in Eq. (278) are equal, and that equation reduces to 

 
  

  
  

  
  

 
 

or 
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(283) 

 

The ratio of the heat rejected at    to the heat absorbed at    is just equal to the 

ratio      . Then from Eq. (268) the efficiency of the Carnot engine is 

 

          
  
  

 
     
  

 
(284) 

 

This simple result says that the efficiency of a Carnot engine depends only 

on the temperatures of the two heat reservoirs. The efficiency is large when the 

temperature difference is large, and it is very small when the temperatures are 

nearly equal. The efficiency can never be exactly unity unless     ; we’ll see 

later that this, too, is impossible. 

We can prove that no engine can be more efficient than a Carnot engine 

operating between the same two temperatures. The key to the proof is the above 

observation that since each step in the Carnot cycle is reversible, the entire cycle 

may be reversed. Run backward, the engine becomes a refrigerator. Suppose we 

have an engine that is more efficient than a Carnot engine (see fig. 20.15). Let the 

Carnot engine, run backward as a refrigerator by negative work     , take in heat 

   from the cold reservoir and expel heat      to the hot reservoir. The 

superefficient engine expels heat     , but to do this, it takes in a greater amount of 

heat     .Its work output is then     and the net effect of the two machines 

together is to take a quantity of heat and convert it completely into work. This 

violates the engine statement of the second law. We could construct a similar 

argument that a superefficient engine could be used to violate the refrigerator 

statement of the second law. Note that we don’t have to assume that the 

superefficient engine is reversible. In a similar way we can show that no 

refrigerator can have a greater coefficient of performance than a Carnot 

refrigerator operating between the same two temperatures. 
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Figure 172 – Proving that the Carnot engine has the highest possible efficiency. A 

“superefficient” engine (more efficient than a Carnot engine) combined with a 

Carnot refrigerator could convert  heat completely into work with no net heat 

transfer to the cold reservoir. This would violate the second law of 

thermodynamics 

 

Thus the statement that no engine can be more efficient than a Carnot engine 

is yet another equivalent statement of the second law of thermodynamics. It also 

follows directly that all Carnot engines operating between the same two 

temperatures have the same efficiency, irrespective of the nature of the 

working substance. Although we derived Eq. (284) for a Carnot engine using an 

ideal gas as its working substance, it is in fact valid for any Carnot engine, no 

matter what its working substance. 

Equation (284), the expression for the efficiency of a Carnot engine, sets an 

upper limit to the efficiency of a real engine such as a steam turbine. To maximize 

this upper limit and the actual efficiency of the real engine, the designer must make 

the intake temperature    as high as possible and the exhaust temperature    as 

low as possible (see fig. 20.16). 
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Figure 173 – To maximize efficiency, the temperatures inside a jet engine are 

made as high as possible. Exotic ceramic materials are used that can withstand 

temperatures in excess of 10    without melting or becoming soft 

 

The exhaust temperature cannot be lower than the lowest temperature 

available for cooling the exhaust. For a steam turbine at an electric power plant,    

may be the temperature  of river or lake water; then we want the boiler temperature 

   to be as high as possible. The vapor pressures of all liquids increase rapidly 

with temperature, so we are limited by the mechanical strength of the boiler. At 

     the vapor pressure of water is about 235 atm; this is about the maximum 

practical pressure in large present-day steam boilers. 
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TOPIC 3 ELECTRICITY 

 

 

3.1 Electric charge and electric field 

 

3.1.1 Electric charge 

 

Electromagnetic interactions involve particles that have a property called 

electric charge, an attribute that is as fundamental as mass. Just as objects with 

mass are accelerated by gravitational forces, so electrically charged objects are 

accelerated by electric forces. The shock you feel when you scuff your shoes 

across a carpet and then reach for a metal doorknob is due to charged particles 

leaping between your finger and the doorknob. Electric currents are simply streams 

of charged particles flowing within wires in response to electric forces. Even the 

forces that hold atoms together to form solid matter, and that keep the atoms of 

solid objects from passing through each other, are fundamentally due to electric 

interactions between the charged particles within atoms. 

We begin our study of electromagnetism in this chapter by examining the 

nature of electric charge. We’ll find that charge is quantized and obeys a 

conservation principle. When charges are at rest in our frame of reference, they 

exert electrostatic forces on each other. These forces are of tremendous importance 

in chemistry and biology and have many technological applications. Electrostatic 

forces are governed by a simple relationship known as Coulomb’s law and are 

most conveniently described by using the concept of electric field. In later chapters 

we’ll expand our discussion to include electric charges in motion. This will lead us 

to an understanding of magnetism and, remarkably, of the nature of light. 

While the key ideas of electromagnetism are conceptually simple, applying 

them to practical problems will make use of many of your mathematical skills, 

especially your knowledge of geometry and integral calculus. For this reason you 

may find this chapter and those that follow to be more mathematically demanding 

than earlier chapters. The reward for your extra effort will be a deeper 

understanding of principles that are at the heart of modern physics and technology. 

The ancient Greeks discovered as early as 600 B.C. that after they rubbed 

amber with wool, the amber could attract other objects. Today we say that the 

amber has acquired a net electric charge, or has become charged. The word 

“electric” is derived from the Greek word elektron, meaning amber. When you 

scuff your shoes across a nylon carpet, you become electrically charged, and you 

can charge a comb by passing it through dry hair. 

Plastic rods and fur (real or fake) are particularly good for demonstrating 

electrostatics, the interactions between electric charges that are at rest (or nearly 

so). After we charge both plastic rods in Fig. 174a by rubbing them with the piece 

of fur, we find that the rods repel each other. 

When we rub glass rods with silk, the glass rods also become charged and 

repel each other (see fig. 174b). But a charged plastic rod attracts a charged glass 
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rod; furthermore, the plastic rod and the fur attract each other, and the glass rod 

and the silk attract each other (see fig. 174c). 

 

 
Figure 174 – Experiments in electrostatics. (a) Negatively charged objects repel 

each other. (b) Positively charged objects repel each other. (c) Positively charged 

objects and negatively charged objects attract each other 

 

These experiments and many others like them have shown that there are 

exactly two kinds of electric charge: the kind on the plastic rod rubbed with fur and 

the kind on the glass rod rubbed with silk. Benjamin Franklin (1706–1790) 

suggested calling these two kinds of charge negative and positive, respectively, and 

these names are still used. The plastic rod and the silk have negative charge; the 

glass rod and the fur have positive charge. 

Two positive charges or two negative charges repel each other. A positive 

charge and a negative charge attract each other. 

One application of forces between charged bodies is in a laser printer (see 

fig. 175). The printer’s light-sensitive imaging drum is given a positive charge. As 

the drum rotates, a laser beam shines on selected areas of the drum, leaving those 

areas with a negative charge. Positively charged particles of toner adhere only to 

the areas of the drum “written” by the laser. When a piece of paper is placed in 

contact with the drum, the toner particles stick to the paper and form an image. 
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Figure 175 – Schematic diagram of the operation of a laser printer 

 

When you charge a rod by rubbing it with fur or silk as in fig. 174, there is 

no visible change in the appearance of the rod. What, then, actually happens to the 

rod when you charge it? To answer this question, we must look more closely at the 

structure of atoms, the building blocks of ordinary matter. 

The structure of atoms can be described in terms of three particles: the 

negatively charged electron, the positively charged proton, and the uncharged 

neutron (see fig. 176). The proton and neutron are combinations of other entities 

called quarks, which have charges of and times the electron charge. Isolated quarks 

have not been observed, and there are theoretical reasons to believe that it is 

impossible in principle to observe a quark in isolation. 

 

 
Figure 176 – The structure of an atom. The particular atom depicted here is 

lithium 

 

The protons and neutrons in an atom make up a small, very dense core called 

the nucleus, with dimensions of the order of Surrounding the nucleus are the 
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electrons, extending out to distances of the order of from the nucleus. If an atom 

were a few kilometers across, its nucleus would be the size of a tennis ball. The 

negatively charged electrons are held within the atom by the attractive electric 

forces exerted on them by the positively charged nucleus. (The protons and 

neutrons are held within stable atomic nuclei by an attractive interaction, called the 

strong nuclear force, that overcomes the electric repulsion of the protons. The 

strong nuclear force has a short range, and its effects do not extend far beyond the 

nucleus.) 

The masses of the individual particles, to the precision that they are 

presently known, are  

 

Mass of electron = me = 9.109382151452 * 10-31 kg 

Mass of proton = mp = 1.6726216371832 * 10-27 kg 

Mass of neutron = mn = 1.6749272111842 * 10-27 kg 

 

The numbers in parentheses are the uncertainties in the last two digits. Note 

that the masses of the proton and neutron are nearly equal and are roughly 2000 

times the mass of the electron. Over 99.9% of the mass of any atom is concentrated 

in its nucleus. 

The negative charge of the electron has (within experimental error) exactly 

the same magnitude as the positive charge of the proton. In a neutral atom the 

number of electrons equals the number of protons in the nucleus, and the net 

electric charge (the algebraic sum of all the charges) is exactly zero (see fig. 177a). 

The number of protons or electrons in a neutral atom of an element is called the 

atomic number of the element. If one or more electrons are removed from an 

atom, what remains is called a positive ion (see fig. 177b). A negative ion is an 

atom that has gained one or more electrons (see fig. 177c). This gain or loss of 

electrons is called ionization. 

When the total number of protons in a macroscopic body equals the total 

number of electrons, the total charge is zero and the body as a whole is electrically 

neutral. To give a body an excess negative charge, we may either add negative 

charges to a neutral body or remove positive charges from that body. Similarly, we 

can create an excess positive charge by either adding positive charge or removing 

negative charge. In most cases, negatively charged (and highly mobile) electrons 

are added or removed, and a “positively charged body” is one that has lost some of 

its normal complement of electrons. When we speak of the charge of a body, we 

always mean its net charge. The net charge is always a very small fraction 

(typically no more than ) of the total positive charge or negative charge in the 

body. 
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Figure 177 – (a) A neutral atom has as many electrons as it does protons. (b) A 

positive ion has s deficit of electrons. (c) A negative ion has an excess of electrons. 

(The electron “shells” are a schematic representation of the actual electron 

distribution, a diffuse cloud many times larger than the nucleus) 

 

Implicit in the foregoing discussion are two very important principles. First 

is the principle of conservation of charge: 

The algebraic sum of all the electric charges in any closed system is constant. 

If we rub together a plastic rod and a piece of fur, both initially uncharged, the rod 

acquires a negative charge (since it takes electrons from the fur) and the fur 

acquires a positive charge of the same magnitude (since it has lost as many 

electrons as the rod has gained). Hence the total electric charge on the two bodies 

together does not change. In any charging process, charge is not created or 

destroyed; it is merely transferred from one body to another. 

Conservation of charge is thought to be a universal conservation law. No 

experimental evidence for any violation of this principle has ever been observed. 

Even in high-energy interactions in which particles are created and destroyed, such 

as the creation of electron–positron pairs, the total charge of any closed system is 

exactly constant. 

The second important principle is: 

The magnitude of charge of the electron or proton is a natural unit of charge. 

Every observable amount of electric charge is always an integer multiple of this 

basic unit. We say that charge is quantized. A familiar example of quantization is 

money. When you pay cash for an item in a store, you have to do it in one-cent 

increments. Cash can’t be divided into amounts smaller than one cent, and electric 

charge can’t be divided into amounts smaller than the charge of one electron or 
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proton. (The quark charges, and of the electron charge, are probably not observable 

as isolated charges.) Thus the charge on any macroscopic body is always either 

zero or an integer multiple (negative or positive) of the electron charge. 

Understanding the electric nature of matter gives us insight into many 

aspects of the physical world. The chemical bonds that hold atoms together to form 

molecules are due to electric interactions between the atoms. They include the 

strong ionic bonds that hold sodium and chlorine atoms together to make table salt 

and the relatively weak bonds between the strands of DNA that record your body’s 

genetic code. The normal force exerted on you by the chair in which you’re sitting 

arises from electric forces between charged particles in the atoms of your seat and 

in the atoms of your chair. The tension force in a stretched string and the adhesive 

force of glue are likewise due to the electric interactions of atoms. 

 

3.1.2 Coulomb’s law 

 

Charles Augustin de Coulomb (1736–1806) studied the interaction forces of 

charged particles in detail in 1784. He used a torsion balance similar to the one 

used 13 years later by Cavendish to study the much weaker gravitational 

interaction. For point charges, chargedbodies that are very small in comparison 

with the distance between them, Coulomb found that the electric force is 

proportional to That is, when the distance doubles, the force decreases to one-

quarter of its initial value; when the distance is halved, the force increases to four 

times its initial value. 

The electric force between two point charges also depends on the quantity of 

charge on each body, which we will denote by q or Q. To explore this dependence, 

Coulomb divided a charge into two equal parts by placing a small charged 

spherical conductor into contact with an identical but uncharged sphere; by 

symmetry, the charge is shared equally between the two spheres. (Note the 

essential role of the principle of conservation of charge in this procedure.) Thus he 

could obtain one-half, one-quarter, and so on, of any initial charge. He found that 

the forces that two point charges    and    exert on each other are proportional to 

each charge and therefore are proportional to the product      of the two charges. 

Thus Coulomb established what we now call Coulomb’s law: 

The magnitude of the electric force between two point charges is directly 

proportional to the product of the charges and inversely proportional to the 

square of the distance between them. 

In mathematical terms, the magnitude   of the force that each of two point charges 

   and    a distance apart exerts on the other can be expressed as 

 

   
      

  
 

(285) 

 

where   is a proportionality constant whose numerical value depends on the 

system of units used. The absolute value bars are used in Eq. (285) because the 
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charges    and    can be either positive or negative, while the force magnitude   

is always positive. 

The directions of the forces the two charges exert on each other are always 

along the line joining them. When the charges    and    have the same sign, either 

both positive or both negative, the forces are repulsive; when the charges have 

opposite signs, the forces are attractive. The two forces obey Newton’s third law; 

they are always equal in magnitude and opposite in direction, even when the 

charges are not equal in magnitude. 

The proportionality of the electric force to      has been verified with great 

precision. There is no reason to suspect that the exponent is different from 

precisely 2. Thus the form of Eq. (285) is the same as that of the law of gravitation. 

But electric and gravitational interactions are two distinct classes of phenomena. 

Electric interactions depend on electric charges and can be either attractive or 

repulsive, while gravitational interactions depend on mass and are always attractive 

(because there is no such thing as negative mass). 

The value of the proportionality constant   in Coulomb’s law depends on the 

system of units used. In our study of electricity and magnetism we will use SI units 

exclusively. The SI electric units include most of the familiar units such as the volt, 

the ampere, the ohm, and the watt. (There is no British system of electric units.) 

The SI unit of electric charge is called one coulomb (1 C). In SI units the constant 

  in Eq. (285) is 

 

                    
  

  
            

  

  
 

 

The value of   is known to such a large number of significant figures because this 

value is closely related to the speed of light in vacuum. As we discussed this speed 

is defined to be exactly                  
 

 
. The numerical value of is 

defined in terms of to be precisely 

 

          
  

  
    

 

You should check this expression to confirm that   has the right units. 

In principle we can measure the electric force   between two equal charges 

at a measured distance   and use Coulomb’s law to determine the charge. Thus we 

could regard the value of   as an operational definition of the coulomb. For 

reasons of experimental precision it is better to define the coulomb instead in terms 

of a unit of electric current (charge per unit time), the ampere, equal to 1 coulomb 

per second. 

In SI units we usually write the constant in Eq. (285) as       , where    

(“epsilon-nought” or “epsilon-zero”) is another constant. This appears to 
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complicate matters, but it actually simplifies many formulas that we will encounter 

in later chapters. From now on, we will usually write Coulomb’s law as 

 

  
      

     
 
 

(286) 

 

The constants in Eq. (286) are approximately 

 

               
  

    
 

 

and 

 

 

    
               

  

  
 

 

In examples and problems we will often use the approximate value 

 

 

    
         

  

  
 

 

 

which is within about 0.1% of the correct value. 

As we mentioned early, the most fundamental unit of charge is the 

magnitude of the charge of an electron or a proton, which is denoted by e. The 

most precise value available as of the writing of this book is 

 

                          
 

One coulomb represents the negative of the total charge of about        

electrons. For comparison, a copper cube 1 cm on a side contains about          

electrons. About      electrons pass through the glowing filament of a flashlight 

bulb every second. 

In electrostatics problems (that is, problems that involve charges at rest), it’s 

very unusual to encounter charges as large as 1 coulomb. Two 1-C charges 

separated by 1 m would exert forces on each other of magnitude         (about 

1 million tons)! The total charge of all the electrons in a copper one-cent coin is 

even greater, about          , which shows that we can’t disturb electric 

neutrality very much without using enormous forces. More typical values of charge 

range from about      to about       . The microcoulomb               and 

the nanocoulomb               are often used as practical units of charge. 

Coulomb’s law as we have stated it describes only the interaction of two 

point charges. Experiments show that when two charges exert forces imultaneously 
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on a third charge, the total force acting on that charge is the vector sum of the 

forces that the two charges would exert individually. This important property, 

called the principle of superposition of forces, holds for any number of charges. 

By using this principle, we can apply Coulomb’s law to any collection of charges. 

Two of the examples at the end of this section use the superposition principle. 

Strictly speaking, Coulomb’s law as we have stated it should be used only 

for point charges in vacuum. If matter is present in the space between the charges, 

the net force acting on each charge is altered because charges are induced in the 

molecules of the intervening material. We will describe this effect later. As a 

practical matter, though, we can use Coulomb’s law unaltered for point charges in 

air. At normal atmospheric pressure, the presence of air changes the electric force 

from its vacuum value by only about one part in 2000. 
 

3.1.3 Electric field and electric forces 

 

When two electrically charged particles in empty space interact, how does 

each one know the other is there? We can begin to answer this question, and at the 

same time reformulate Coulomb’s law in a very useful way, by using the concept 

of electric field. 

To introduce this concept, let’s look at the mutual repulsion of two 

positively charged bodies A and B (see fig. 178a). Suppose B has charge    and let 

    be the electric force A of on B. One way to think about this force is as an 

“action-at-adistance” force—that is, as a force that acts across empty space without 

needing any matter (such as a push rod or a rope) to transmit it through the 

intervening space. (Gravity can also be thought of as an “action-at-a-distance” 

force.) But a more fruitful way to visualize the repulsion between A and B is as a 

two-stage process. We first envision that body A, as a result of the charge that it 

carries, somehow modifies the properties of the space around it. Then body B, as a 

result of the charge that it carries, senses how space has been modified at its 

position. The response of body is to experience the force    . 

To elaborate how this two-stage process occurs, we first consider body A by 

itself: We remove body B and label its former position as point P (see fig. 178b). 

We say that the charged body A produces or causes an electric field at point P (and 

at all other points in the neighborhood). This electric field is present at P even if 

there is no charge at P; it is a consequence of the charge on body A only. If a point 

charge    is then placed at point P, it experiences the force    . We take the point 

of view that this force is exerted on    by the field at P (see fig. 178c). Thus the 

electric field is the intermediary through which A communicates its presence to   . 

Because the point charge    would experience a force at any point in the 

neighborhood of A, the electric field that A produces exists at all points in the 

region around A. 
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Figure 178 – A charged body creates an electric field in the space around it 

 

We can likewise say that the point charge    produces an electric field in the 

space around it and that this electric field exerts the force      on body A. For each 

force (the force of A on    and the force of    on A), one charge sets up an electric 

field that exerts a force on the second charge. We emphasize that this is an 

interaction between two charged bodies. A single charge produces an electric field 

in the surrounding space, but this electric field cannot exert a net force on the 

charge that created it a body cannot exert a net force on itself. (If this wasn’t true, 

you would be able to lift yourself to the ceiling by pulling up on your belt!) 

The electric force on a charged body is exerted by the electric field created by 

other charged bodies. 

To find out experimentally whether there is an electric field at a particular 

point, we place a small charged body, which we call a test charge, at the point (see 

fig. 178c). If the test charge experiences an electric force, then there is an electric 

field at that point. This field is produced by charges other than   . 
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Force is a vector quantity, so electric field is also a vector quantity. (Note the 

use of vector signs as well as boldface letters and plus, minus, and equals signs in 

the following discussion.) We define the electric field     at a point as the electric 

force     experienced by a test charge    at the point, divided by the charge   . 

That is, the electric field at a certain point is equal to the electric force per unit 

charge experienced by a charge at that point: 

 

    
   
  

 
(287) 

 

In SI units, in which the unit of force is 1 N and the unit of charge is 1 C, the unit 

of electric field magnitude is 1 newton per coulomb (1 N/C). 

If the field     at a certain point is known, rearranging Eq. (287) gives the 

force     experienced by a point charge    placed at that point. This force is just 

equal to the electric field     produced at that point by charges other than   , 

multiplied by the charge   : 

 

          (288) 

 

The charge    can be either positive or negative. If    is positive, the force 

    experienced by the charge is the same direction as    ; if    is negative,     and     
are in opposite directions (see fig. 179). 

 

 
Figure 179 The force           exerted on a point charge    placed in an electric 

field     
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While the electric field concept may be new to you, the basic idea - that one 

body sets up a field in the space around it and a second body responds to that field 

- is one that you’ve actually used before. Compare Eq. (288) to the familiar 

expression for the gravitational force     that the earth exerts on a mass   : 

 

         (289) 

 

In this expression,    is the acceleration due to gravity. If we divide both sides of 

Eq. (289) by the mass we obtain 

 

   
   
  

 
(290) 

 

Thus    can be regarded as the gravitational force per unit mass. By analogy to Eq. 

(287), we can interpret    as the gravitational field. Thus we treat the gravitational 

interaction between the earth and the mass    as a two-stage process: The earth 

sets up a gravitational field in the space around it, and this gravitational field exerts 

a force given by Eq. (289) on the mass    (which we can regard as a test mass). 

The gravitational field    or gravitational force per unit mass, is a useful concept 

because it does not depend on the mass of the body on which the gravitational 

force is exerted; likewise, the electric field     or electric force per unit charge, is 

useful because it does not depend on the charge of the body on which the electric 

force is exerted. 

If the source distribution is a point charge  , it is easy to find the electric 

field that it produces. We call the location of the charge the source point, and we 

call the point P where we are determining the field the field point. It is also useful 

to introduce a unit vector    that points along the line from source point to field 

point (see fig. 180a). This unit vector is equal to the displacement vector    from the 

source point to the field point, divided by the distance        between these two 

points; that is,        . If we place a small test charge    at the field point P, at a 

distance r from the source point, the magnitude    of the force is given by 

Coulomb’s law, Eq. (286): 

 

   
     

     
 
 

(291) 

 

From Eq. (287) the magnitude E of the electric field at P is 

 

  
   

     
 
 

(292) 
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Figure 180 – The electric field     produced at point P by an isolated point charge q 

at S. Note that in both (b) and (c),     is produced by    but acts on the charge  at 

point P 

 

Using the unit vector    we can write a vector equation that gives both the 

magnitude and direction of the electric field    : 
 

    
 

     
 
   (293) 

 

By definition, the electric field of a point charge always points away from a 

positive charge (that is, in the same direction as   ; see Fig. 180b) but toward a 

negative charge (that is, in the direction opposite   , see Fig. 180c). 

We have emphasized calculating the electric field     at a certain point. But 

since     can vary from point to point, it is not a single vector quantity but rather an 

infinite set of vector quantities, one associated with each point in space. This is an 

example of a vector field. Figure 181 shows a number of the field vectors 

produced by a positive or negative point charge. If we use a rectangular         

coordinate system, each component of     at any point is in general a function of the 

coordinates         of the point. We can represent the functions as          , 
          and          .Vector fields are an important part of the language of 

physics, not just in electricity and magnetism. One everyday example of a vector 

field is the velocity    of wind currents; the magnitude and direction of    and hence 

its vector components, vary from point to point in the atmosphere. 
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Figure 181 – A point charge   produces an electric field     at all points in 

space. The field strength decreases with increasing distance 

 

In some situations the magnitude and direction of the field (and hence its 

vector components) have the same values everywhere throughout a certain region; 

we then say that the field is uniform in this region. An important example of this is 

the electric field inside a conductor. If there is an electric field within a conductor, 

the field exerts a force on every charge in the conductor, giving the free charges a 

net motion. By definition an electrostatic situation is one in which the charges have 

no net motion. We conclude that in electrostatics the electric field at every point 

within the material of conductor must be zero. (Note that we are not saying that the 

field is necessarily zero in a hole inside a conductor.) 

In summary, our description of electric interactions has two parts. First, a 

given charge distribution acts as a source of electric field. Second, the electric field 

exerts a force on any charge that is present in the field. Our analysis often has two 

corresponding steps: first, calculating the field caused by a source charge 

distribution; second, looking at the effect of the field in terms of force and motion. 

The second step often involves Newton’s laws as well as the principles of electric 

interactions. In the next section we show how to calculate fields caused by various 

source distributions, but first here are three examples of calculating the field due to 

a point charge and of finding the force on a charge due to a given field    . 
Equation (293) gives the electric field caused by a single point charge. But in 

most realistic situations that involve electric fields and forces, we encounter charge 

that is distributed over space. The charged plastic and glass rods in Fig. 174 have 

electric charge distributed over their surfaces, as does the imaging drum of a laser 

printer (see fig. 175). In this section we’ll learn to calculate electric fields caused 

by various distributions of electric charge. Calculations of this kind are of 



248 
 

tremendous importance for technological applications of electric forces. To 

determine the trajectories of atomic nuclei in an accelerator for cancer radiotherapy 

or of charged particles in a semiconductor electronic device, you have to know the 

detailed nature of the electric field acting on the charges. 

The Superposition of Electric Fields. To find the field caused by a charge 

distribution, we imagine the distribution to be made up of many point charges 

          . (This is actually quite a realistic description, since we have seen that 

charge is carried by electrons and protons that are so small as to be almost 

pointlike.) At any given point each point charge produces its own electric field 

                , so a test charge placed at P experiences a force            from 

charge   , a force            from charge    and so on. From the principle of 

superposition of forces     the total force that the charge distribution exerts on is 

the vector sum of these individual forces: 

 

                                           (294) 

 

The combined effect of all the charges in the distribution is described by the total 

electric field     at point P. From the definition of electric field, Eq. (287), this is 

 

    
   
  

                   
(295) 

 

The total electric field at P is the vector sum of the fields at P due to each 

point charge in the charge distribution. This is the principle of superposition of 

electric fields. 

When charge is distributed along a line, over a surface, or through a volume, 

a few additional terms are useful. For a line charge distribution (such as a long, 

thin, charged plastic rod), we use   (the Greek letter lambda) to represent the 

linear charge density (charge per unit length, measured in C/m). When charge is 

distributed over a surface (such as the surface of the imaging drum of a laser 

printer), we use   (sigma) to represent the surface charge density (charge per unit 

area, measured in C/m
2
). And when charge is distributed through a volume, we use 

  (rho) to represent the volume charge density (charge per unit volume, C/m
3
). 

Some of the calculations in the following examples may look fairly intricate. 

After you’ve worked through the examples one step at a time, the process will 

seem less formidable.  
 

3.2 Electric potential 

 

3.2.1 Electric potential energy 

 

The concepts of work, potential energy, and conservation of energy proved 

to be extremely useful in our study of mechanics. In this section we’ll show that 
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these concepts are just as useful for understanding and analyzing electrical 

interactions. 

Let’s begin by reviewing three essential points. First, when a force    acts on 

a particle that moves from point a to point b, the work      done by the force is 

given by a line integral: 

 

            

 

 

         

 

 

 

(296) 

 

where     is an infinitesimal displacement along the particle’s path and   is the 

angle between    and     at each point along the path. 

Second, if the force    is conservative the work done by    can always be 

expressed in terms of a potential energy U. When the particle moves from a point 

where the potential  energy is    to a point where it is   , the change in potential 

energy          is and the work      done by the force is 

 

                        (297) 

 

When      is positive,    is greater than   ,    is negative, and the potential 

energy decreases. That’s what happens when a baseball falls from a high point (a) 

to a lower point (b) under the influence of the earth’s gravity; the force of gravity 

does positive work, and the gravitational potential energy decreases (see fig. 182). 

When a tossed ball is moving upward, the gravitational force does negative work 

during the ascent, and the potential energy increases. 

 

 
Figure 182 – The work done on a baseball moving in a uniform gravitational field 
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Third, the work–energy theorem says that the change in kinetic energy 

         during a displacement equals the total work done on the particle. If 

only conservative forces do work, then Eq. (297) gives the total work, and 

              . We usually write this as 

 

            (298) 

 

That is, the total mechanical energy (kinetic plus potential) is conserved under 

these circumstances. 

Let’s look at an electrical example of these basic concepts. In Fig. 183 a pair 

of charged parallel metal plates sets up a uniform, downward electric field with 

magnitude E. The field exerts a downward force with magnitude       on a 

positive test charge   . As the charge moves downward a distance d from point a 

to point b, the force on the test charge is constant and independent of its location. 

So the work done by the electric field is the product of the force magnitude and the 

component of displacement in the (downward) direction of the force: 

 

             (299) 

 

This work is positive, since the force is in the same direction as the net 

displacement of the test charge. 

 

 
Figure 183 – The work done on a point charge moving in a uniform electric 

field 
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The y-component of the electric force,         is constant, and there is 

no x- or z-component. This is exactly analogous to the gravitational force on a 

mass m near the earth’s surface; for this force, there is a constant y-component 

       and the x- and z-components are zero. Because of this analogy, we can 

conclude that the force exerted on by the uniform electric field in Fig. 183 is 

conservative, just as is the gravitational force. This means that the work      

done by the field is independent of the path the particle takes from a to b. We can 

represent this work with a potential-energy function U, just as we did for 

gravitational potential energy. The potential energy for the gravitational force 

       was       hence the potential energy for the electric force 

        is 

 

       (300) 

 

When the test charge moves from height    to height   , the work done on the 

charge by the field is given by 

 

                                            (301) 

 

When    is greater than    (see fig. 184a), the positive test charge    moves 

downward, in the same direction as    ; the displacement is in the same direction as 

the force         , so the field does positive work and U decreases. [In particular, 

if         as in Fig. 183, Eq. (301) gives           in agreement with 

Eq. (299).] When    is less than    (see fig. 184b), the positive test charge    

moves upward, in the opposite direction to     the displacement is opposite the 

force, the field does negative work, and U increases. 

 

 
Figure 184 – A positive charge moving (a) in the direction of the electric 

field     and (b) in the direction opposite     
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If the test charge    is negative, the potential energy increases when it 

moves with the field and decreases when it moves against the field (see fig. 185). 

 

 
Figure 185 – A negative charge moving (a) in the directional of the electric 

field     and (b) in the direction opposite     
 

Whether the test charge is positive or negative, the following general rules 

apply: U increases if the test charge moves in the direction opposite the electric  

Force          (Figs. 184b and 185a); U decreases if moves in the same direction 

as          (Figs. 184a and 185b). This is the same behavior as for gravitational 

potential energy, which increases if a mass m moves upward (opposite the 

direction of the gravitational force) and decreases if m moves downward (in the 

same direction as the gravitational force). 

The idea of electric potential energy isn’t restricted to the special case of a 

uniform electric field. Indeed, we can apply this concept to a point charge in any 

electric field caused by a static charge distribution. We can represent any charge 

distribution as a collection of point charges. Therefore it’s useful to calculate the 

work done on a test charge    moving in the electric field caused by a single, 

stationary point charge  . 

We’ll consider first a displacement along the radial line in Fig. 186. The 

force on    is given by Coulomb’s law, and its radial component is 

 

   
   

     
 
 

(302) 

 

If q and    have the same sign (+ or -) the force is repulsive and    is positive; if 

the two charges have opposite signs, the force is attractive and    is negative. The 

force is not constant during the displacement, and we have to integrate to calculate 

the work      done on    by this force as    moves from a to b: 
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(303) 

 

The work done by the electric force for this particular path depends only on the 

endpoints. 

 

 
Figure 186 – Test charge    moves along a straight line extending radially from 

charge  . As it moves from a to b, the distance varies from    to    

 

Now let’s consider a more general displacement (see fig. 187) in which a 

and b do not lie on the same radial line. From Eq. (296) the work done on    

during this displacement is given by 

 

             

  

  

  
   

     
 
      

  

  

 

(304) 

 

But Fig. 187 shows that          . That is, the work done during a small 

displacement     depends only on the change    in the distance r between the 

charges, which is the radial component of the displacement. Thus Eq. (303) is 

valid even for this more general displacement; the work done on    by the electric 

field     produced by q depends only on    and   , not on the details of the path. 
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Also, if    returns to its starting point a by a different path, the total work done in 

the round-trip displacement is zero (the integral in Eq. (303) is from    back to   ). 

These are the needed characteristics for a conservative force. Thus the force on is a 

conservative force. 

 

 
Figure 187 – The work done on charge    by the electric field of charge   does not 

depend on the path taken, but only on the distances    and    

 

We see that Eqs. (297) and (303) are consistent if we define the potential 

energy to be    
   

      
 when    is a distance    from q, and to be    

   

      
 

when    is a distance    from q. Thus the potential energy U when the test charge 

   is at any distance r from charge q is 

 

  
   
     

 
(305) 

 

Equation (305) is valid no matter what the signs of the charges   and   . The 

potential energy is positive if the charges q and have the same sign (see fig. 188a) 

and negative if they have opposite signs (see fig. 188b). 
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Figure 188 – Graphs of the potential energy   of two point charges   and    

versus their separation   

 

Potential energy is always defined relative to some reference point where 

   . In Eq. (305), U is zero when q and    are infinitely far apart and    . 

Therefore U represents the work that would be done on the test charge    by the 

field of q if    moved from an initial distance r to infinity. If q and    have the 

same sign, the interaction is repulsive, this work is positive, and U is positive at 

any finite separation (see fig. 188a). If the charges have opposite signs, the 

interaction is attractive, the work done is negative, and U is negative (see fig. 

188b). 

We emphasize that the potential energy U given by Eq. (305) is a shared 

property of the two charges. If the distance between   and    is changed from    to 

   the change in potential energy is the same whether q is held fixed and    is 

moved or    is held fixed and q is moved. For this reason, we never use the phrase 

“the electric potential energy of a point charge.” (Likewise, if a mass m is at a 

height h above the earth’s surface, the gravitational potential energy is a shared 

property of the mass m and the earth. 

Equation (305) also holds if the charge    is outside a spherically symmetric 

charge distribution with total charge q; the distance r is from to the center of the 

distribution. That’s because Gauss’s law tells us that the electric field outside such 

a distribution is the same as if all of its charge q were concentrated at its center. 

Suppose the electric field     in which charge    moves is caused by several 

point charges            at distances            from    as in Fig. 189. For 

example,    could be a positive ion moving in the presence of other ions. The total 

electric field at each point is the vector sum of the fields due to the individual 

charges, and the total work done on    during any displacement is the sum of the 

contributions from the individual charges. From Eq. (305) we conclude that the 
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potential energy associated with the test charge    at point a in Fig. 189 is the 

algebraic sum (not a vector sum): 

 

  
  

    
 
  
  

 
  
  

 
  
  

    
  
    

 
  
  

 

 
(306) 

 

When    is at a different point   the potential energy is given by the same 

expression, but         are the distances from         to point The work done on 

charge    when it moves from a to b along any path is equal to the difference 

      between the potential energies when    is at a and at b. 

 

 
Figure 189 – The potential energy associated with a charge    at point a 

depends on the other charges             and on their distances          from 

point a 

 

We can represent any charge distribution as a collection of point charges, so 

Eq. (306) shows that we can always find a potential-energy function for any static 

electric field. It follows that for every electric field due to a static charge 

distribution, the force exerted by that field is conservative. 

Equations (305) and (306) define U to be zero when all the distances         

are infinite - that is, when the test charge    is very far away from all the charges 

that produce the field. As with any potential-energy function, the point where 

    is arbitrary; we can always add a constant to make U equal zero at any point 

we choose. In electrostatics problems it’s usually simplest to choose this point to 

be at infinity. 

Equation (306) gives the potential energy associated with the presence of the 

test charge    in the field     produced by           . But there is also potential 

energy involved in assembling these charges. If we start with charges            

all separated from each other by infinite distances and then bring them together so 

that the distance between    and    is the total potential energy U is the sum of the 

potential energies of interaction for each pair of charges. We can write this as 
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(307) 

 

This sum extends over all pairs of charges; we don’t let     (because that would 

be an interaction of a charge with itself ), and we include only terms with     to 

make sure that we count each pair only once. Thus, to account for the interaction 

between and we include a term with     and     but not a term with     and 

   .  

As a final comment, here are two viewpoints on electric potential energy. 

We have defined it in terms of the work done by the electric field on a charged 

particle moving in the field, we defined potential energy in terms of the work done 

by gravity or by a spring. When a particle moves from point a to point the work 

done on it by the electric field is           .Thus the potential-energy 

difference       equals the work that is done by the electric force when the 

particle moves from a to b. When is greater than the field does positive work on the 

particle as it “falls” from a point of higher potential energy to a point of lower 

potential energy 

An alternative but equivalent viewpoint is to consider how much work we 

would have to do to “raise” a particle from a point b where the potential energy is 

   to a point a where it has a greater value    (pushing two positive charges closer 

together, for example). To move the particle slowly (so as not to give it any kinetic 

energy), we need to exert an additional external force       that is equal and 

opposite to the electric-field force and does positive work. The potential energy 

difference       is then defined as the work that must be done by an external 

force to move the particle slowly from b to a against the electric force. Because 

      is the negative of the electric-field force and the displacement is in the 

opposite direction, this definition of the potential difference       is equivalent 

to that given above. This alternative viewpoint also works    if is less than 

corresponding to “lowering” the particle; an example is moving two positive 

charges away from each other. In this case,       is again equal to the work 

done by the external force, but now this work is negative. 

We will use both of these viewpoints in the next section to interpret what is 

meant by electric potential, or potential energy per unit charge. 

 

3.2.2 Electric potential 

 

Early we looked at the potential energy U associated with a test charge    in 

an electric field. Now we want to describe this potential energy on a “per unit 

charge” basis, just as electric field describes the force per unit charge on a charged 

particle in the field. This leads us to the concept of electric potential, often called 

simply potential. This concept is very useful in calculations involving energies of 

charged particles. It also facilitates many electric-field calculations because electric 
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potential is closely related to the electric field    . When we need to determine an 

electric field, it is often easier to determine the potential first and then find the field 

from it. 

Potential is potential energy per unit charge. We define the potential   at 

any point in an electric field as the potential energy U per unit charge associated 

with a test charge    at that point: 

 

  
 

  
 

(308) 

or 

      (309) 

 

Potential energy and charge are both scalars, so potential is a scalar. From Eq. 

(309) its units are the units of energy divided by those of charge. The SI unit of 

potential, called one volt (1 V) in honor of the Italian electrical experimenter 

Alessandro Volta (1745–1827), equals 1 joule per coulomb: 

 

            
 

 
                 

 

Let’s put Eq. (297), which equates the work done by the electric force during 

a displacement from a to b to the quantity              on a “work per unit 
charge” basis. We divide this equation by    obtaining 

 
    

  
   

  

  
   

  

  
 
  

  
              

(310) 

 

Where    
  

  
 is the potential energy per unit charge at point a and similarly for 

   . We call    and    the potential at point a and potential at point b 

respectively. Thus the work done per unit charge by the electric force when a 

charged body moves from a to b b is equal to the potential at a minus the potential 

at b. 

The difference       is called the potential of a with respect to b; we 

sometimes abbreviate this difference as           (note the order of the 

subscripts). 

This is often called the potential difference between a and b but that’s ambiguous 

unless we specify which is the reference point. In electric circuits, which we will 

analyze in later chapters, the potential difference between two points is often called 

voltage (see fig. 190). Equation (310) then states:    , the potential of with 

respect to equals the work done by the electric force when a UNIT charge 

moves from a to b. 

Another way to interpret the potential difference     in Eq. (310) is to use 

the alternative viewpoint mentioned. In that viewpoint,       is the amount of 
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work that must be done by an external force to move a particle of charge    slowly 

from b to a against the electric force. The work that must be done per unit charge 

by the external force is then 
       

  
          . In other words:     the 

potential a of with respect to b, equals the work that must be done to move a 

UNIT charge slowly from b to against the electric force. 

 

 
Figure 190 – The voltage of this battery equals the difference in potential 

          between its positive terminal (point a) and its negative terminal 

(points b) 

 

An instrument that measures the difference of potential between two points 

is called a voltmeter. Voltmeters that can measure a potential difference of      

are common, and sensitivities down to         can be attained. 

To find the potential   due to a single point charge   we divide Eq. (305) by 

  : 

 

  
 

  
 

 

    
 

(311) 

 

where r is the distance from the point charge q to the point at which the potential is 

evaluated. If q is positive, the potential that it produces is positive at all points; if q 

is negative, it produces a potential that is negative everywhere. In either case,   is 

equal to zero at     an infinite distance from the point charge. Note that 

potential, like electric field, is independent of the test charge    that we use to 

define it. 

Similarly, we divide Eq. (306) by    to find the potential due to a collection 

of point charges: 
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(312) 

 

In this expression,    is the distance from the charge   , to the point at which   is 

evaluated. Just as the electric field due to a collection of point charges is the vector 

sum of the fields produced by each charge, the electric potential due to a collection 

of point charges is the scalar sum of the potentials due to each charge. When we 

have a continuous distribution of charge along a line, over a surface, or through a 

volume, we divide the charge into elements    and the sum in Eq. (312) becomes 

an integral: 

 

  
 

    
 
  

 
 

(313) 

 

where r is the distance from the charge element    to the field point where we are 

finding  . We’ll work out several examples of such cases. The potential defined by 

Eqs. (312) and (23.16) is zero at points that are infinitely far away from all the 

charges. Later we’ll encounter cases in which the charge distribution itself extends 

to infinity. We’ll find that in such cases we cannot set     at infinity, and we’ll 

need to exercise care in using and interpreting Eqs. (312) and (23.16). 

When we are given a collection of point charges, Eq. (312) is usually the 

easiest way to calculate the potential  . But in some problems in which the electric 

field is known or can be found easily, it is easier to determine   from    . The force 

   on a test charge    can be written as          so from Eq. (23.1) the work done 

by the electric force as the test charge moves from a to b is given by 

 

           

 

 

          

 

 

 

(314) 

 

If we divide this by    and compare the result with Eq. (310), we find 

 

             

 

 

         

 

 

 

(315) 

 

The value       of is independent of the path taken from a to b, just as the 

value of      is independent of the path. To interpret Eq. (315), remember that     

is the electric force per unit charge on a test charge. If the line integral        
 

 
 is 

positive, the electric field does positive work on a positive test charge as it moves 

from a to b. In this case the electric potential energy decreases as the test charge 
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moves, so the potential energy per unit charge decreases as well; hence    is less 

than    and       is positive. 

As an illustration, consider a positive point charge (see fig. 191a). The 

electric field is directed away from the charge, and            is positive at any 

finite distance from the charge. If you move away from the charge, in the direction 

of    , you move toward lower values of  ; if you move toward the charge, in the 

direction opposite    , you move toward greater values of  . For the negative point 

charge in Fig. 191b,     is directed toward the charge and           is negative 

at any finite distance from the charge. In this case, if you move toward the charge, 

you are moving in the direction     of and in the direction of decreasing (more 

negative)  . Moving away from the charge, in the direction opposite     moves you 

toward increasing (less negative) values of  . The general rule, valid for any 

electric field, is: Moving with the direction of     means moving in the direction of 

decreasing   and moving against the direction of     means moving in the direction 

of increasing  . 

 

 
Figure 191 – If you move in the direction of    , electric potential   

decreases, if you move in the direction opposite    ,   increases 

 

Also, a positive test charge    experiences an electric force in the direction 

of     toward lower values of  ; a negative test charge experiences a force opposite 

   , toward higher values of  . Thus a positive charge tends to “fall” from a high-

potential region to a lower-potential region. The opposite is true for a negative 

charge. 

Notice that Eq. (315) can be rewritten as 

 

              

 

 

 

(316) 
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This has a negative sign compared to the integral in Eq. (315), and the limits are 

reversed; hence Eqs. (315) and (316) are equivalent. But Eq. (316) has a slightly 

different interpretation. To move a unit charge slowly against the electric force, we 

must apply an external force per unit charge equal to     , equal and opposite to the 

electric force per unit charge    . Equation (316) says that          , the 

potential of a with respect to b, equals the work done per unit charge by this 

external force to move a unit charge from b to a. This is the same alternative 

interpretation we discussed under Eq. (310). 

Equations (315) and (316) show that the unit of potential difference       is 

equal to the unit of electric field   
 

 
  multiplied by the unit of distance      . 

Hence the unit of electric field can be expressed as 1 volt per meter      , as well 

as      : 

 

 
 

 
  

    

     
  

 

 
                  

 

In practice, the volt per meter is the usual unit of electric-field magnitude. 

 

3.2.3 Equipotential surfaces 

 

Field lines help us visualize electric fields. In a similar way, the potential at 

various points in an electric field can be represented graphically by equipotential 

surfaces. These use the same fundamental idea as topographic maps like those used 

by hikers and mountain climbers (see fig. 192). On a topographic map, contour 

lines are drawn through points that are all at the same elevation. Any number of 

these could be drawn, but typically only a few contour lines are shown at equal 

spacings of elevation. If a mass m is moved over the terrain along such a contour 

line, the gravitational potential energy mgy does not change because the elevation y 

is constant. Thus contour lines on a topographic map are really curves of constant 

gravitational potential energy. Contour lines are close together where the terrain is 

steep and there are large changes in elevation over a small horizontal distance; the 

contour lines are farther apart where the terrain is gently sloping. A ball allowed to 

roll downhill will experience the greatest downhill gravitational force where 

contour lines are closest together. 
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Figure 192 – Contour lines on a topographic map are curves of constant 

elevation and hence of constant gravitational potential energy 

 

By analogy to contour lines on a topographic map, an equipotential surface 

is a three-dimensional surface on which the electric potential   is the same at 

every point. If a test charge    is moved from point to point on such a surface, the 

electric potential energy     remains constant. In a region where an electric field 

is present, we can construct an equipotential surface through any point. In 

diagrams we usually show only a few representative equipotentials, often with 

equal potential differences between adjacent surfaces. No point can be at two 

different potentials, so equipotential surfaces for different potentials can never 

touch or intersect. 

Because potential energy does not change as a test charge moves over an 

equipotential surface, the electric field can do no work on such a charge. It follows 

that     must be perpendicular to the surface at every point so that the electric force 

      is always perpendicular to the displacement of a charge moving on the 

surface. 

Field lines and equipotential surfaces are always mutually perpendicular. In 

general, field lines are curves, and equipotentials are curved surfaces. For the 

special case of a uniform field, in which the field lines are straight, parallel, and 

equally spaced, the equipotentials are parallel planes perpendicular to the field 

lines.  

Figure 193 shows three arrangements of charges. The field lines in the plane 

of the charges are represented by red lines, and the intersections of the 

equipotential surfaces with this plane (that is, cross sections of these surfaces) are 

shown as blue lines. The actual equipotential surfaces are three-dimensional. At 

each crossing of an equipotential and a field line, the two are perpendicular. 
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Figure 193 – Cross section of equipotential surface (blue lines) and electric 

field lines (red lines) for assemblies of point charge. There are equal potential 

difference between adjacent surfaces.  

 

In Fig. 193 we have drawn equipotentials so that there are equal potential 

differences between adjacent surfaces. In regions where the magnitude of is large, 

the equipotential surfaces are close together because the field does a relatively 

large amount of work on a test charge in a relatively small displacement. This is 

the case near the point charge in Fig. 193a or between the two point charges in Fig. 

193b; note that in these regions the field lines are also closer together. This is 

directly analogous to the downhill force of gravity being greatest in regions on a 

topographic map where contour lines are close together. Conversely, in regions 

where the field is weaker, the equipotential surfaces are farther apart; this happens 

at larger radii in Fig. 193a, to the left of the negative charge or the right of the 
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positive charge in Fig. 193b, and at greater distances from both charges in Fig. 

193c. (It may appear that two equipotential surfaces intersect at the center of Fig. 

193c, in violation of the rule that this can never happen. In fact this is a single 

figure-8–shaped equipotential surface.) 

Here’s an important statement about equipotential surfaces: When all 

charges are at rest, the surface of a conductor is always an equipotential 

surface. Since the electric field     is always perpendicular to an equipotential 

surface, we can prove this statement by proving that when all charges are at rest, 

the electric field just outside a conductor must be perpendicular to the surface at 

every point (see fig. 194). We know that       everywhere inside the conductor; 

otherwise, charges would move. In particular, at any point just inside the surface 

the component of     tangent to the surface is zero. It follows that thetangential 

component of     is also zero just outside the surface. If it were not, a charge could 

move around a rectangular path partly inside and partly outside (see fig. 195) and 

return to its starting point with a net amount of work having been done on it. This 

would violate the conservative nature of electrostatic fields, so the tangential 

component of     just outside the surface must be zero at every point on the surface. 

Thus     is perpendicular to the surface at each point, proving our statement. 

 

 
Figure 194 – When charges are at rest, a conducting surface is always an 

equipotential surface. Field lines are perpendicular to a conducting surface 
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Figure 195 – At all points on the surface of a conductor, the electric field 

must be perpendicular to the surface. If     had a tangential component, a net 

amount of work would be done on a test charge by moving  in around a loop as 

shown here – which is impossible because the electric force is conservative 

 

It also follows that when all charges are at rest, the entire solid volume 

of a conductor is at the same potential. Equation (315) states that the potential 

difference between two points a and b within the conductor’s solid volume, 

     , is equal to the line integral        
 

 
 of the electric field from a to b. Since 

everywhere inside the conductor, the integral is guaranteed to be zero for any two 

such points a and b. Hence the potential is the same for any two points within the 

solid volume of the conductor. We describe this by saying that the solid volume of 

the conductor is an equipotential volume. 

Finally, we can now prove a theorem. The theorem is as follows: In an 

electrostatic situation, if a conductor contains a cavity and if no charge is present 

inside the cavity, then there can be no net charge anywhere on the surface of the 

cavity. This means that if you’re inside a charged conducting box, you can safely 

touch any point on the inside walls of the box without being shocked. To prove this 

theorem, we first prove that every point in the cavity is at the same potential. In 

Fig. 196 the conducting surface A of the cavity is an equipotential surface, as we 

have just proved. Suppose point P in the cavity is at a different potential; then we 

can construct a different equipotential surface B including point P. 

Now consider a Gaussian surface, shown in Fig. 196, between the two 

equipotential surfaces. Because of the relationship between and the equipotentials, 

we know that the field at every point between the equipotentials is from A toward 

or else at every point it is from B toward A, depending on which equipotential 

surface is at higher potential. In either case the flux through this Gaussian surface 

is certainly not zero. But then Gauss’s law says that the charge enclosed by the 

Gaussian surface cannot be zero. This contradicts our initial assumption that there 

is no charge in the cavity. So the potential at P cannot be different from that at the 

cavity wall. 
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Figure 23.26 – A cavity in a conductor. If the cavity is at the same potential, 

the electric field is zero every where in the cavity, and there is no charge anywhere 

on the surface of the cavity 

 

The entire region of the cavity must therefore be at the same potential. But 

for this to be true, the electric field inside the cavity must be zero everywhere. 

Finally, Gauss’s law shows that the electric field at any point on the surface of a 

conductor is proportional to the surface charge density   at that point. We 

conclude that the surface charge density on the wall of the cavity is zero at every 

point. This chain of reasoning may seem tortuous, but it is worth careful study. 

 

3.3 Current, resistance and electromotive force 

 

3.3.1 Current 

 

A current is any motion of charge from one region to another. In this 

section we’ll discuss currents in conducting materials. The vast majority of 

technological applications of charges in motion involve currents of this kind. 

In electrostatic situations the electric field is zero everywhere within the 

conductor, and there is no current. However, this does not mean that all charges 

within the conductor are at rest. In an ordinary metal such as copper or alumium, 

some of the electrons are free to move within the conducting material. These free 

electrons move randomly in all directions, somewhat like the molecules of a gas 

but with much greater speeds, of the order of        . The electrons nonetheless 

do not escape from the conducting material, because they are attracted to the 

positive ions of the material. The motion of the electrons is random, so there is no 

net flow of charge in any direction and hence no current. 

Now consider what happens if a constant, steady electric field     is 

established inside a conductor. (We’ll see later how this can be done.) A charged 

particle (such as a free electron) inside the conducting material is then subjected to 

a steady force        . If the charged particle were moving in vacuum, this steady 
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force would cause a steady acceleration in the direction of     and after a time the 

charged particle would be moving in that direction at high speed. But a charged 

particle moving in a conductor undergoes frequent collisions with the massive, 

nearly stationary ions of the material. In each such collision the particle’s direction 

of motion undergoes a random change. The net effect of the electric field     is that 

in addition to the random motion of the charged particles within the conductor, 

there is also a very slow net motion or drift of the moving charged particles as a 

group in the direction of the electric force         (see fig. 197). This motion is 

described in terms of the drift velocity     of the particles. As a result, there is a 

net current in the conductor. 

 

 
Figure 197 – If there is no electric field inside a conductor, an electron 

moves randomly from point    to point    in a time   . If an electric field     is 

present, the electric force         impose a small drift (greatly exaggerated here) 

that takes the electron to point    , a distance      from    in the direction of the 

force 
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While the random motion of the electrons has a very fast average speed of 

about        , the drift speed is very slow, often on the order of         . 

Given that the electrons move so slowly, you may wonder why the light comes on 

immediately when you turn on the switch of a flashlight. The reason is that the 

electric field is set up in the wire with a speed approaching the speed of light, and 

electrons start to move all along the wire at very nearly the same time. The time 

that it takes any individual electron to get from the switch to the light bulb isn’t 

really relevant. A good analogy is a group of soldiers standing at attention when 

the sergeant orders them to start marching; the order reaches the soldiers’ ears at 

the speed of sound, which is much faster than their marching speed, so all the 

soldiers start to march essentially in unison. 

The drift of moving charges through a conductor can be interpreted in terms 

of work and energy. The electric field     does work on the moving charges. The 

resulting kinetic energy is transferred to the material of the conductor by means of 

collisions with the ions, which vibrate about their equilibrium positions in the 

crystalline structure of the conductor. This energy transfer increases the average 

vibrational energy of the ions and therefore the temperature of the material. Thus 

much of the work done by the electric field goes into heating the conductor, not 

into making the moving charges move ever faster and faster. This heating is 

sometimes useful, as in an electric toaster, but in many situations is simply an 

unavoidable by-product of current flow. 

In different current-carrying materials, the charges of the moving particles 

may be positive or negative. In metals the moving charges are always (negative) 

electrons, while in an ionized gas (plasma) or an ionic solution the moving charges 

may include both electrons and positively charged ions. In a semiconductor 

material such as germanium or silicon, conduction is partly by electrons and partly 

by motion of vacancies, also known as holes; these are sites of missing electrons 

and act like positive charges. 

Figure 198 shows segments of two different current-carrying materials. In 

Fig. 198a the moving charges are positive, the electric force is in the same 

direction as    , and the drift velocity     is from left to right. In Fig. 198b the 

charges are negative, the electric force is opposite to    , and the drift velocity     is 

from right to left. In both cases there is a net flow of positive charge from left to 

right, and positive charges end up to the right of negative ones. We define the 

current, denoted by  , to be in the direction in which there is a flow of positive 

charge. Thus we describe currents as though they consisted entirely of positive 

charge flow, even in cases in which we know that the actual current is due to 

electrons. Hence the current is to the right in both Figs. 25.2a and 25.2b. This 

choice or convention for the direction of current flow is called conventional 

current. While the direction of the conventional current is not necessarily the same 

as the direction in which charged particles are actually moving, we’ll find that the 

sign of the moving charges is of little importance in analyzing electric circuits. 
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Figure 198 – The same current can be produced by (a) positive charges 

moving in the direction of the electric filed     or (b) the same number of negative 

charges moving as the same speed in the direction opposite to     
 

Figure 199 shows a segment of a conductor in which a current is flowing. 

We consider the moving charges to be positive, so they are moving in the same 

direction as the current. We define the current through the cross-sectional area   to 

be the net charge flowing through the area per unit time. Thus, if a net charge    

flows through an area in a time   , the current   through the area is 

 

  
  

  
 

(317) 

 

The SI unit of current is the ampere; one ampere is defined to be one 

coulomb per second          . This unit is named in honor of the French 

scientist André Marie Ampère (1775–1836). When an ordinary flashlight (D-cell 

size) is turned on, the current in the flashlight is about 0.5 to 1; the current in the 

wires of a car engine’s starter motor is around  200 A. Currents in radio and 
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television circuits are usually expressed in milliamperes               or 

microamperes               and currents in computer circuits are expressed in 

nanoamperes               or picoamperes               . 
We can express current in terms of the drift velocity of the moving charges. 

Let’s consider again the situation of Fig. 199 of a conductor with cross-sectional 

area   and an electric field     directed from left to right. To begin with, we’ll 

assume that the free charges in the conductor are positive; then the drift velocity is 

in the same direction as the field. 

 

 
Figure 199 – The current   is the time rate of charge transfer through the cross-

section area      . The random component of each moving charged particle’s 

motion averages to zero, and the current is in the same direction as     whether the 

moving charges are positive (as shown here) or negative 

 

Suppose there are moving charged particles per unit volume. We call   the 

concentration of particles; its SI unit is     . Assume that all the particles move 

with the same drift velocity with magnitude   . In a time interval   , each particle 

moves a distance      . The particles that flow out of the right end of the shaded 

cylinder with length       during    are the particles that were within this cylinder 

at the beginning of the interval   . The volume of the cylinder is    , and the 
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number of particles within it is       . If each particle has a charge  , the charge 

   that flows out of the end of the cylinder    during time is 

 

                     (318) 

 

and the current is 

 

  
  

  
       

(319) 

 

The current per unit cross-sectional area is called the current density   
 

  
 

 
      

(320) 

 

The units of current density are amperes per square meter     . 

If the moving charges are negative rather than positive, as in Fig. 198b, the 

drift velocity is opposite to But the current is still in the same direction as     at 

each point in the conductor. Hence the current   and current density   don’t depend 

on the sign of the charge, and so in the above expressions for   and   we replace 

the charge by its absolute value    : 
 

  
  

  
         

(321) 

 

  
 

 
        

(322) 

 

The current in a conductor is the product of the concentration of moving charged 

particles, the magnitude of charge of each such particle, the magnitude of the drift 

velocity, and the cross-sectional area of the conductor. 

We can also define a vector current density    that includes the direction of 

the drift velocity: 

 

         (323) 

 

There are no absolute value signs in Eq. (323). If is positive,     is in the same 

direction as    ; if   is negative, is opposite to    . In either case, is in the same 

direction as    . Equation (322) gives the magnitude   of the vector current density   . 
In general, a conductor may contain several different kinds of moving 

charged particles having charges        , concentrations         and drift 

velocities with magnitudes          .. An example is current flow in an ionic 

solution (see fig. 200). In a sodium chloride solution, current can be carried by 

both positive sodium ions and negative chlorine ions; the total current   is found by 
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adding up the currents due to each kind of charged particle, using Eq. (321). 

Likewise, the total vector current density    is found by using Eq. (323) for each 

kind of charged particle and adding the results. 

 

 
Figure 200 Part of the electric circuit that includes this light bulb passes through a 

beaker with a solution of sodium chloride. The current in the solution is carried by 

both positive charges (          and negative charges            
 

It is possible to have a current that is steady (that is, one that is constant in 

time) only if the conducting material forms a closed loop, called a complete circuit. 

In such a steady situation, the total charge in every segment of the conductor is 

constant. Hence the rate of flow of charge out at one end of a segment at any 

instant equals the rate of flow of charge in at the other end of the segment, and the 

current is the same at all cross sections of the circuit. We’ll make use of this 

observation when we analyze electric circuits later in this chapter. 

In many simple circuits, such as flashlights or cordless electric drills, the 

direction of the current is always the same; this is called direct current. But home 

appliances such as toasters, refrigerators, and televisions use alternating current, in 

which the current continuously changes direction. In this chapter we’ll consider 

direct current only. Alternating current has many special features worthy of 

detailed study. 
 

3.3.2 Resistivity and resistance 

 

The current density    in a conductor depends on the electric field     and on 

the properties of the material. In general, this dependence can be quite complex. 

But for some materials, especially metals, at a given temperature,    is nearly 

directly proportional to    , and the ratio of the magnitudes of   and   is constant. 

This relationship, called Ohm’s law, was discovered in 1826 by the German 
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physicist Georg Simon Ohm (1787–1854). The word “law” should actually be in 

quotation marks, since Ohm’s law, like the ideal-gas equation and Hooke’s law, is 

an idealized model that describes the behavior of some materials quite well but is 

not a general description of all matter. In the following discussion we’ll assume 

that Ohm’s law is valid, even though there are many situations in which it is not. 

The situation is comparable to our representation of the behavior of the static and 

kinetic friction forces; we treated these friction forces as being directly 

proportional to the normal force, even though we knew that this was at best an 

approximate description. 

We define the resistivity   of a material as the ratio of the magnitudes of 

electric field and current density: 

 

  
 

 
 

(324) 

 

The greater the resistivity, the greater the field needed to cause a given current 

density, or the smaller the current density caused by a given field. From Eq. (324) 

the units of   are                   . As we will discuss in the next 

section,       is called one ohm (   ; we use the Greek letter  , or omega, which 

is alliterative with “ohm”). So the SI units for   are   (ohm-meters). Table 25.1 

lists some representative values of resistivity. A perfect conductor would have zero 

resistivity, and a perfect insulator would have an infinite resistivity. Metals and 

alloys have the smallest resistivities and are the best conductors. The resistivities of 

insulators are greater than those of the metals by an enormous factor, on the order 

of     . 

The reciprocal of resistivity is conductivity. Its units are        . Good 

conductors of electricity have larger conductivity than insulators. Conductivity is 

the direct electrical analog of thermal conductivity. Comparing Table 8 with Table 

6 (Thermal Conductivities), we note that good electrical conductors, such as 

metals, are usually also good conductors of heat. Poor electrical conductors, such 

as ceramic and plastic materials, are also poor thermal conductors. In a metal the 

free electrons that carry charge in electrical conduction also provide the principal 

mechanism for heat conduction, so we should expect a correlation between 

electrical and thermal conductivity. Because of the enormous difference in 

conductivity between electrical conductors and insulators, it is easy to confine 

electric currents to well-defined paths or circuits (see fig. 201). The variation in 

thermal conductivity is much less, only a factor of     or so, and it is usually 

impossible to confine heat currents to that extent. 
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Table 8 – Resistivities at room temperature     

 Substance         
Conductors   

Metals Silver           

 Copper           

 Gold           

 Aluminium           

 Tungsten           

 Steel         

 Lead         

 Mercury         

Alloys Manganin (Cu 84%, Mn 12%, Ni 4%)         

 Constantan (Cu 60%, Ni 40%)         

 Nichrome (Ni 55-78%, Cr 13-23%, 

Mn, Si, Fe, Al) 
         

Semiconductors   

 Pure carbon (graphite)          

 Pure germanium     

 Pure silicon      

Insulators   

 Amber        

 Glass           

 Lucite       

 Mica           

 Quartz (fused)         

 Sulfur     

 Teflon       

 Wood          

 

Semiconductors have resistivities intermediate between those of metals and 

those of insulators. These materials are important because of the way their 

resistivities are affected by temperature and by small amounts of impurities. 

Amaterial that obeys Ohm’s law reasonably well is called an ohmic conductor or a 

linear conductor. For such materials, at a given temperature,   is a constant that 

does not depend on the value of  . Many materials show substantial departures 

from Ohm’s-law behavior; they are nonohmic, or nonlinear. In these materials, 

depends on in a more complicated manner. 

Analogies with fluid flow can be a big help in developing intuition about 

electric current and circuits. For example, in the making of wine or maple syrup, 

the product is sometimes filtered to remove sediments. A pump forces the fluid 

through the filter under pressure; if the flow rate (analogous to  ) is proportional 

to the pressure difference between the upstream and downstream sides (analogous 

to E), the behavior is analogous to Ohm’s law. 



276 
 

 
Figure 201 – The copper “wires” or traces, on this circuit board  are printed 

directly onto the surface of the dark-colored insulating board. Even though the 

traces are very close to each other (only about a millimetre apart), the board has 

such a high resistivity (and low conductivity) that no current can flow between the 

traces 

 

The resistivity of a metallic conductor nearly always increases with 

increasing temperature, as shown in Fig. 202a. As temperature increases, the ions 

of the conductor vibrate with greater amplitude, making it more likely that a 

moving electron will collide with an ion as in Fig. 197; this impedes the drift of 

electrons through the conductor and hence reduces the current. Over a small 

temperature range (up to      or so), the resistivity of a metal can be represented 

approximately by the equation 

 

                   (325) 

 

where    is the resistivity at a reference temperature    (often taken as    or     

and      is the resistivity at temperature  , which may be higher or lower than   . 

The factor is called the temperature coefficient of resistivity. Some representative 
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values are given in Table 9. The resistivity of the alloy manganin is practically 

independent of temperature. 

 

Table 9 – Temperature coefficients of resistivity (approximate values near room 

temperature) 

Material          
Aluminium 0.0039 

Brass 0.002 

Carbon (graphite) -0.0005 

Constantan 0.00001 

Copper 0.00393 

Iron 0.005 

Lead 0.0043 

Manganin 0.00000 

Mercury 0.00088 

Nochrome 0.0004 

Silver 0.0038 

Tungsten 0.0045 

 

The resistivity of graphite (a nonmetal) decreases with increasing 

temperature, since at higher temperatures, more electrons are “shaken loose” from 

the atoms and become mobile; hence the temperature coefficient of resistivity of 

graphite is negative. This same behavior occurs for semiconductors (see fig. 202b). 

Measuring the resistivity of a small semiconductor crystal is therefore a sensitive 

measure of temperature; this is the principle of a type of thermometer called a 

thermistor. 

Some materials, including several metallic alloys and oxides, show a 

phenomenon called superconductivity. As the temperature decreases, the resistivity 

at first decreases smoothly, like that of any metal. But then at a certain critical 

temperature    a phase transition occurs and the resistivity suddenly drops to zero, 

as shown in Fig. 202c. Once a current has been established in a superconducting 

ring, it continues indefinitely without the presence of any driving field. 

Superconductivity was discovered in 1911 by the Dutch physicist Heike 

Kamerlingh Onnes (1853–1926). He discovered that at very low temperatures, 

below      , the resistivity of mercury suddenly dropped to zero. For the next 75 

years, the highest    attained was about     . This meant that superconductivity 

occurred only when the material was cooled using expensive liquid helium, with a 

boiling-point temperatureof      , or explosive liquid hydrogen, with a boiling 

point of       . But in 1986 Karl Müller and Johannes Bednorz discovered an 

oxide of barium, lanthanum, and copper with a    of nearly     , and the race was 

on to develop “high-temperature” superconducting materials. 
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Figure 202 – Variation of resistivity   with absolute temperature T for (a) a normal 

metal, (b) a semiconductor, and (c) a sperconductor. In (a) the linear approximation 

to   as a function of T is shown as a green line; the approximation agrees exactly 

at     , where      

 

By 1987 a complex oxide of yttrium, copper, and barium had been found 

that has a value    of well above the 77 K boiling temperature of liquid nitrogen, a 

refrigerant that is both inexpensive and safe. The current (2010) record for    at 

atmospheric pressure is 138 K, and materials that are superconductors at room 

temperature may become a reality. The implications of these discoveries for 

power-distribution systems, computer design, and transportation are enormous. 

Meanwhile, superconducting electromagnets cooled by liquid helium are used in 

particle accelerators and some experimental magnetic-levitation railroads. 
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For a conductor with resistivity the current density    at a point where the 

electric field is     is given by Eq. (324), which we can write as 

 

        (326) 

 

When Ohm’s law is obeyed  , is constant and independent of the magnitude of the 

electric field, so     is directly proportional to   . Often, however, we are more 

interested in the total current in a conductor than in    and more interested in the 

potential difference between the ends of the conductor than in    . This is so largely 

because current and potential difference are much easier to measure than    are and 

   . 
Suppose our conductor is a wire with uniform cross-sectional area   and 

length  , as shown in Fig. 203. Let   be the potential difference between the 

higher-potential and lower-potential ends of the conductor, so that   is positive. 

The direction of the current is always from the higher-potential end to the 

lowerpotential end. That’s because current in a conductor flows in the direction of 

   , no matter what the sign of the moving charges (see fig. 198), and because     
points in the direction of decreasing electric potential. As the current flows through 

the potential difference, electric potential energy is lost; this energy is transferred 

to the ions of the conducting material during collisions. 

 

 
Figure 203 – A conductor with uniform cross section. The current density uniform 

over any cross section, and the electric field is constant along the length 

 

We can also relate the value of the current   to the potential difference 

between the ends of the conductor. If the magnitudes of the current density    and 

the electric field     are uniform throughout the conductor, the total current   is 
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given by     , and the potential difference   between the ends is     . When 

we solve these equations for   and  , respectively, and substitute the results in Eq. 

(326), we obtain 

 
 

 
 
  

 
 

(327) 

or 

  
  

 
  

(328) 

 

This shows that when   is constant, the total current   is proportional to the 

potential difference  . 

The ratio of to for a particular conductor is called its resistance  : 

 

  
 

 
 

(329) 

 

Comparing this definition of to Eq. (328), we see that the resistance   of a 

particular conductor is related to the resistivity   of its material by 

 

  
  

 
 

(330) 

 

If   is constant, as is the case for ohmic materials, then so is  . 

The equation 

 

     (331) 

 

is often called Ohm’s law, but it is important to understand that the real content of 

Ohm’s law is the direct proportionality (for some materials) of   to   or of   to  . 

Equation (329) or (331) defines resistance   for any conductor, whether or not it 

obeys Ohm’s law, but only when   is constant can we correctly call this 

relationship Ohm’s law. 

Equation (330) shows that the resistance of a wire or other conductor of 

uniform cross section is directly proportional to its length and inversely 

proportional to its cross-sectional area. It is also proportional to the resistivity of 

the material of which the conductor is made. 

The flowing-fluid analogy is again useful. In analogy to Eq. (330), a narrow 

water hose offers more resistance to flow than a fat one, and a long hose has more 

resistance than a short one (see fig. 25.8). We can increase the resistance to flow 

by stuffing the hose with cotton or sand; this corresponds to increasing the 

resistivity. The flow rate is approximately proportional to the pressure difference 

between the ends. Flow rate is analogous to current, and pressure difference is 

analogous to potential difference (“voltage”). Let’s not stretch this analogy too far, 



281 
 

though; the water flow rate in a pipe is usually not proportional to its crosssectional 

area. 

The SI unit of resistance is the ohm, equal to one volt per ampere      
      . The kilohm            and the megohm            are also in 

common use. A 100-m length of 12-gauge copper wire, the size usually used in 

household wiring, has a resistance at room temperature of about      . A 100 –W, 

12-V light bulb has a resistance (at operating temperature) of .       If the same 

current   flows in both the copper wire and the light bulb, the potential difference 

     is much greater across the light bulb, and much more potential energy is 

lost per charge in the light bulb. This lost energy is converted by the light bulb 

filament into light and heat. You don’t want your household wiring to glow white-

hot, so its resistance is kept low by using wire of low resistivity and large cross-

sectional area. 

Because the resistivity of a material varies with temperature, the resistance 

of a specific conductor also varies with temperature. For temperature ranges that 

are not too great, this variation is approximately a linear relationship, analogous to 

Eq. (325): 

 

                   (332) 

 

In this equation,      is the resistance at temperature   and    is the resistance at 

temperature    often taken to be    or     . The temperature coefficient of 

resistance   is the same constant that appears in Eq. (325) if the dimensions   and 

  in Eq. (330) do not change appreciably with temperature; this is indeed the case 

for most conducting materials. Within the limits of validity of Eq. (332), the 

change in resistance resulting from a temperature change      is given by 

        . 
A circuit device made to have a specific value of resistance between its ends 

is called a resistor. Resistors in the range      to       can be bought off the 

shelf. Individual resistors used in electronic circuitry are often cylindrical, a few 

millimeters in diameter and length, wit h wires coming out of the ends. The 

resistance may be marked with a standard code using three or four color bands near 

one end (see fig. 204), according to the scheme shown in Table 10. The first two 

bands (starting with the band nearest an end) are digits, and the third is a power-of-

10 multiplier, as shown in Fig. 204. For example, green–violet–red means    
     , or       . The fourth band, if present, indicates the precision (tolerance) of 

the value; no band means     , a silver band      and     a gold band 

Another important characteristic of a resistor is the maximum power it can 

dissipate without damage. 
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Figure 204 – This resistor has a resistance of        with a precision (tolerance) of 

     

 

Table 10 – Color codes for resistors 

Color Value as digit Value as muliplier 

Black 0 1 

Brown 1 10 

Red 2 10
2 

Orange 3 10
3
 

Yellow 4 10
4
 

Green 5 10
5
 

Blue 6 10
6
 

Violet 7 10
7
 

Gray 8 10
8
 

White 9 10
9
 

 

For a resistor that obeys Ohm’s law, a graph of current as a function of 

potential difference (voltage) is a straight line (see fig. 205a). The slope of the line 

is    . If the sign of the potential difference changes, so does the sign of the 

current produced; in Fig. 203 this corresponds to interchanging the higherand 

lower-potential ends of the conductor, so the electric field, current density, and 

current all reverse direction. In devices that do not obey Ohm’s law, the 

relationship of voltage to current may not be a direct proportion, and it may be 

different for the two directions of current. Figure 205b shows the behavior of a 

semiconductor diode, a device used to convert alternating current to direct current 

and to perform a wide variety of logic functions in computer circuitry. For positive 

potentials of the anode (one of two terminals of the diode) with respect to the 

cathode (the other terminal), increases exponentially with increasing for negative 

potentials the current is extremely small. Thus a positive   causes a current to flow 

in the positive direction, but a potential difference of the other sign causes little or 

no current. Hence a diode acts like a one-way valve in a circuit. 
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Figure 205 – Current-voltage relationship for two devices. Only for a resistor that 

obeys Ohm’s law as in (a) is current   proportional to voltage   

 

3.3.3 Electromotive force and circuits 

 

For a conductor to have a steady current, it must be part of a path that forms 

a closed loop or complete circuit. Here’s why. If you establish an electric field      

inside an isolated conductor with resistivity   that is not part of a complete circuit, 

a current begins to flow with current density           (Fig 206a). As a result a net 

positive charge quickly accumulates at one end of the conductor and a net negative 

charge accumulates at the other end (Fig 206b). These charges themselves produce 

an electric field      in the direction opposite to     , causing the total electric field 

and hence the current to decrease. Within a very small fraction of a second, enough 

charge builds up on the conductor ends that the total electric field               

inside the conductor. Then      as well, and the current stops altogether (Fig 

206c). So there can be no steady motion of charge in such an incomplete circuit. 

To see how to maintain a steady current in a complete circuit, we recall a 

basic fact about electric potential energy: If a charge goes around a complete 

circuit and returns to its starting point, the potential energy must be the same at the 

end of the round trip as at the beginning. As described early, there is always a 

decrease in potential energy when charges move through an ordinary conducting 

material with resistance. So there must be some part of the circuit in which the 

potential energy increases. 
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Figure 206 – If an electric field is produced inside a conductor that is not part of a 

complete circuit, current flows for only a very short time 

 

The problem is analogous to an ornamental water fountain that recycles its 

water. The water pours out of openings at the top, cascades down over the terraces 

and spouts (moving in the direction of decreasing gravitational potential energy), 

and collects in a basin in the bottom. A pump then lifts it back to the top 

(increasing the potential energy) for another trip. Without the pump, the water 

would just fall to the bottom and stay there. 

In an electric circuit there must be a device somewhere in the loop that acts 

like the water pump in a water fountain. In this device a charge travels “uphill,” 

from lower to higher potential energy, even though the electrostatic force is trying 
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to push it from higher to lower potential energy. The direction of current in such a 

device is from lower to higher potential, just the opposite of what happens in an 

ordinary conductor. The influence that makes current flow from lower to higher 

potential is called electromotive force (abbreviated emf and pronounced “ee-em-

eff”). This is a poor term because emf is not a force but an energy-per-unit-charge 

quantity, like potential. The SI unit of emf is the same as that for potential, the volt 

           . A typical flashlight battery has an emf of 1.5 V; this means that the 

battery does 1.5 J of work on every coulomb of charge that passes through it. We’ll 

use the symbol ℰ (a script capital E) for emf. 

Every complete circuit with a steady current must include some device that 

provides emf. Such a device is called a source of emf. Batteries, electric 

generators, solar cells, thermocouples, and fuel cells are all examples of sources of 

emf. All such devices convert energy of some form (mechanical, chemical, 

thermal, and so on) into electric potential energy and transfer it into the circuit to 

which the device is connected. An ideal source of emf maintains a constant 

potential difference between its terminals, independent of the current through it. 

We define electromotive force quantitatively as the magnitude of this potential 

difference. As we will see, such an ideal source is a mythical beast, like the 

frictionless plane and the massless rope. We will discuss later how real-life sources 

of emf differ in their behavior from this idealized model. 

Figure 207 is a schematic diagram of an ideal source of emf that maintains a 

potential difference between conductors a and b, called the terminals of the device. 

Terminal a, marked +, is maintained at higher potential than terminal b, marked -. 

Associated with this potential difference is an electric field     in the region around 

the terminals, both inside and outside the source. The electric field inside the 

device is directed from a to b, as shown. A charge   within the source experiences 

an electric force         . But the source also provides an additional influence, 

which we represent as a nonelectrostatic force    . This force, operating inside the 

device, pushes charge from to in an “uphill” direction against the electric force    . 

Thus     maintains the potential difference between the terminals. If were not 

present, charge would flow between the terminals until the potential difference was 

zero. The origin of the additional influence     depends on the kind of source. In a 

generator it results from magnetic-field forces on moving charges. In a battery or 

fuel cell it is associated with diffusion processes and varying electrolyte 

concentrations resulting from chemical reactions. In an electrostatic machine such 

as a Van de Graaff generator, an actual mechanical force is applied by a moving 

belt or wheel. 
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Figure 207 – Schematic diagram of a source of emf in an “open-circuit” 

situation. The electric-field force          and the nonelectrostatic force     are 

shown for a positive charge   

 

If a positive charge   is moved from to inside the source, the 

nonelectrostatic force     does a positive amount of work       on the charge. 

This displacement is opposite to the electrostatic force    , so the potential energy 

associated with the charge increases by an amount equal to   , where      
   is the (positive) potential of point a with respect to point b. For the ideal source 

of emf that we’ve described,     and     are equal in magnitude but opposite in 

direction, so the total work done on the charge   is zero; there is an increase in 

potential energy but no change in the kinetic energy of the charge. It’s like lifting a 

book from the floor to a high shelf at constant speed. The increase in potential 

energy is just equal to the nonelectrostatic work   , so      , or 

 

    (333) 

 

Now let’s make a complete circuit by connecting a wire with resistance   to 

the terminals of a source (see fig. 208). The potential difference between terminals 

a and b sets up an electric field within the wire; this causes current to flow around 

the loop from a toward b, from higher to lower potential. Where the wire bends, 

equal amounts of positive and negative charge persist on the “inside” and “outside” 

of the bend. These charges exert the forces that cause the current to follow the 

bends in the wire. 
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From Eq. (331) the potential difference between the ends of the wire in Fig. 

208 is given by     . Combining with Eq. (333), we have 

 

       (334) 

 

That is, when a positive charge   flows around the circuit, the potential rise ℰ as it 

passes through the ideal source is numerically equal to the potential drop      

as it passes through the remainder of the circuit. Once ℰ and   are known, this 

relationship determines the current in the circuit. 

 

 
Figure 208 - Schematic diagram of an ideal source of emf in a complete circuit. 

The electric-field force          and the nonelectrostatic force     are shown for a 

positive charge  . The current is in the direction from a to b in the external circuit 

and from b to a within the source 

 

Real sources of emf in a circuit don’t behave in exactly the way we have 

described; the potential difference across a real source in a circuit is not equal to 

the emf as in Eq. (334). The reason is that charge moving through the material of 

any real source encounters resistance. We call this the internal resistance of the 

source, denoted by  . If this resistance behaves according to Ohm’s law,   is 

constant and independent of the current  . As the current moves through , it 
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experiences an associated drop in potential equal to   . Thus, when a current is 

flowing through a source from the negative terminal b to the positive terminal a, 

the potential difference   between the terminals is 

 

       (335) 

 

The potential    , called the terminal voltage, is less than the emf ℰ because of 

the term    representing the potential drop across the internal resistance  . 

Expressed another way, the increase in potential energy    as a charge   moves 

from b to a within the source is now less than the work    done by the 

nonelectrostatic force     since some potential energy is lost in traversing the 

internal resistance. 

A 1.5-battery has an emf of 1.5 V, but the terminal voltage   of the battery 

is equal to 1.5 V only if no current is flowing through it so that     in Eq. (335). 

If the battery is part of a complete circuit through which current is flowing, the 

terminal voltage will be less than 1.5 V. For a real source of emf, the terminal 

voltage equals the emf only if no current is flowing through the source. Thus we 

can describe the behavior of a source in terms of two properties: an emf ℰ which 

supplies a constant potential difference independent ofcurrent, in series with an 

internal resistance  . 

The current in the external circuit connected to the source terminals a and b 

is still determined by     . Combining this with Eq. (335), we find 

 

        (336) 

or  

  
 

   
 

(337) 

 

That is, the current equals the source emf divided by total circuit resistance 
     . 

The net change in potential energy for a charge making a round trip around a 

complete circuit must be zero. Hence the net change in potential around the circuit 

must also be zero; in other words, the algebraic sum of the potential differences 

and emfs around the loop is zero. We can see this by rewriting Eq. (337) in the 

form 

 

          (338) 

 

A potential gain ℰ of is associated with the emf, and potential drops of    and    

are associated with the internal resistance of the source and the external circuit, 

respectively. Figure 209 is a graph showing how the potential varies as we go 

around the complete circuit. The horizontal axis doesn’t necessarily represent 

actual distances, but rather various points in the loop. If we take the potential to be 

zero at the negative terminal of the battery, then we have a rise ℰ and a drop    in 
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the battery and an additional drop in the external resistor, and as we finish our trip 

around the loop, the potential is back where it started. 

 

 
Figure 209 – Potential rise and drops in a circuit 

 

In this section we have considered only situations in which the resistances 

are ohmic. If the circuit includes a nonlinear device such as a diode (see Fig. 

205b), Eq. (337) is still valid but cannot be solved algebraically because   is not a 

constant. In such a situation, the current   can be found by using numerical 

techniques. 

Finally, we remark that Eq. (335) is not always an adequate representation of 

the behavior of a source. The emf may not be constant, and what we have 

described as an internal resistance may actually be a more complex voltage–current 

relationship that doesn’t obey Ohm’s law. Nevertheless, the concept of internal 

resistance frequently provides an adequate description of batteries, generators, and 

other energy converters. The principal difference between a fresh flashlight battery 

and an old one is not in the emf, which decreases only slightly with use, but in the 

internal resistance, which may increase from less than an ohm when the battery is 

fresh to as much as        or more after long use. Similarly, a car battery can 

deliver less current to the starter motor on a cold morning than when the battery is 

warm, not because the emf is appreciably less but because the internal resistance 

increases with decreasing temperature. 
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3.3.4 Energy and power in electric circuits 

 

Let’s now look at some energy and power relationships in electric circuits. 

The box in Fig. 210 represents a circuit element with potential difference    
     between its terminals and current   passing through it in the direction a 

from b toward . This element might be a resistor, a battery, or something else; the 

details don’t matter. As charge passes through the circuit element, the electric field 

does work on the charge. In a source of emf, additional work is done by the force 

   . 

 

 
Figure 210 – The power input to the circuit element between a and b   

            
 

As an amount of charge   passes through the circuit element, there is a 

change in potential energy equal to   . For example, if     and         is 

positive, potential energy decreases as the charge “falls” from potential    to 

lower potential   . The moving charges don’t gain kinetic energy, because the 

current (the rate of charge flow) out of the circuit element must be the same as the 

current into the element. Instead, the quantity    represents energy transferred into 

the circuit element. This situation occurs in the coils of a toaster or electric oven, in 

which electrical energy is converted to thermal energy. 

If the potential at a is lower than at b, then   is negative and there is a net 

transfer of energy out of the circuit element. The element then acts as a source, 

delivering electrical energy into the circuit to which it is attached. This is the usual 

situation for a battery, which converts chemical energy into electrical energy and 

delivers it to the external circuit. Thus   can denote either a quantity of energy 

delivered to a circuit element or a quantity of energy extracted from that element. 

In electric circuits we are most often interested in the rate at which energy is 

either delivered to or extracted from a circuit element. If the current through the 

element is  , then in a time interval    an amount of charge        passes 

through the element. The potential energy change for this amount of charge is 

        . Dividing this expression by   , we obtain the rate at which energy 

is transferred either into or out of the circuit element. The time rate of energy 

transfer is power, denoted by P, so we write 
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     (339) 

 

(rate at which energy is delivered to or extracted from a circuit)  

The unit of   is one volt, or one joule per coulomb, and the unit of   is one 

ampere, or one coulomb per second. Hence the unit of      is one watt, as it 

should be: 

 

                         
 

Let’s consider a few special cases. 

If the circuit element in Fig. 210 is a resistor, the potential difference is 

     From Eq. (339) the electrical power delivered to the resistor by the circuit 

is 

 

         
  

 
 

(340) 

 

In this case the potential at a (where the current enters the resistor) is always higher 

than that at b (where the current exits). Current enters the higher-potential terminal 

of the device, and Eq. (340) represents the rate of transfer of electric potential 

energy into the circuit element. 

What becomes of this energy? The moving charges collide with atoms in the 

resistor and transfer some of their energy to these atoms, increasing the internal 

energy of the material. Either the temperature of the resistor increases or there is a 

flow of heat out of it, or both. In any of these cases we say that energy is dissipated 

in the resistor at a rate    . Every resistor has a power rating, the maximum power 

the device can dissipate without becoming overheated and damaged. Some 

devices, such as electric heaters, are designed to get hot and transfer heat to their 

surroundings. But if the power rating is exceeded, even such a device may melt or 

even explode. 

The upper rectangle in Fig. 211a represents a source with emf ℰ and internal 

resistance  , connected by ideal (resistanceless) conductors to an external circuit 

represented by the lower box. This could describe a car battery connected to one of 

the car’s headlights (see fig. 211b). Point a is at higher potential than point b, so 

      and   is positive. Note that the current   is leaving the source at the 

higher-potential terminal (rather than entering there). Energy is being delivered to 

the external circuit, at a rate given by Eq. (339): 

 

     (341) 

 

For a source that can be described by an emf ℰ and an internal resistance  , we 

may use Eq. (335): 
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       (342) 

 

Multiplying this equation by  , we find 

 

            (343) 

 

What do the terms     and     mean? We defined the emf ℰ as the work per 

unit charge performed on the charges by the nonelectrostatic force as the charges 

are pushed “uphill” from b to a in the source. In a time   , a charge        
flows through the source; the work done on it by this nonelectrostatic force is 

        . Thus    is the rate at which work is done on the circulating charges 

by whatever agency causes the nonelectrostatic force in the source. This term 

represents the rate of conversion of nonelectrical energy to electrical energy within 

the source. The term     is the rate at which electrical energy is dissipated in the 

internal resistance of the source. The difference        is the net electrical power 

output of the source—that is, the rate at which the source delivers electrical energy 

to the remainder of the circuit. 

 

 
Figure 211 – Energy conservation in a simple circuit 
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Suppose that the lower rectangle in Fig. 211a is itself a source, with an emf 

larger than that of the upper source and with its emf opposite to that of the upper 

source. Figure 212 shows a practical example, an automobile battery (the upper 

circuit element) being charged by the car’s alternator (the lower element). The 

current   in the circuit is then opposite to that shown in Fig. 211; the lower source 

is pushing current backward through the upper source. Because of this reversal of 

current, instead of Eq. (335) we have for the upper source 

 

       (344) 

 

and instead of Eq. (341), we have 

 

            (345) 

 

Work is being done on, rather than by, the agent that causes the 

nonelectrostatic force in the upper source. There is a conversion of electrical 

energy into nonelectrical energy in the upper source at a rate   . The term     in 

Eq. (345) is again the rate of dissipation of energy in the internal resistance of the 

upper source, and the sum        is the total electrical power input to the upper 

source. This is what happens when a rechargeable battery (a storage battery) is 

connected to a charger. The charger supplies electrical energy to the battery; part 

of it is converted to chemical energy, to be reconverted later, and the remainder is 

dissipated (wasted) in the battery’s internal resistance, warming the battery and 

causing a heat flow out of it. If you have a power tool or laptop computer with a 

rechargeable battery, you may have noticed that it gets warm while it is charging. 

 

 
Figure 212 – When two sources are connected in a simple loop circuit, the 

source with the larger emf delivers energy to the other source 
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3.4 Capacitance and dielectrics 

 

3.4.1 Capacitors and Capacitance 

 

Any two conductors separated by an insulator (or a vacuum) form a 

capacitor (see fig. 213). In most practical applications, each conductor initially has 

zero net charge and electrons are transferred from one conductor to the other; this 

is called charging the capacitor. Then the two conductors have charges with equal 

magnitude and opposite sign, and the net charge on the capacitor as a whole 

remains zero. We will assume throughout this chapter that this is the case. When 

we say that a capacitor has charge  , or that a charge   is stored on the capacitor, 

we mean that the conductor at higher potential has charge    and the conductor at 

lower potential has charge    (assuming that   is positive). Keep this in mind in 

the following discussion and examples. 

 

 
Figure 213 – Any two conductors a and b insulated from each other form a 

capacitor 

 

In circuit diagrams a capacitor is represented by either of these symbols: 

. In either symbol the vertical lines (straight or curved) represent 

the conductors and the horizontal lines represent wires connected to either 

conductor. One common way to charge a capacitor is to connect these two wires to 

opposite terminals of a battery. Once the charges   and    are established on the 
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conductors, the battery is disconnected. This gives a fixed potential difference   

between the conductors (that is, the potential of the positively charged conductor a 

with respect to the negatively charged conductor b) that is just equal to the voltage 

of the battery. 

The electric field at any point in the region between the conductors is 

proportional to the magnitude   of charge on each conductor. It follows that the 

potential difference   between the conductors is also proportional to  . If we 

double the magnitude of charge on each conductor, the charge density at each point 

doubles, the electric field at each point doubles, and the potential difference 

between conductors doubles; however, the ratio of charge to potential difference 

does not change. This ratio is called the capacitance   of the capacitor: 

 

  
 

 
 

(346) 

 

The SI unit of capacitance is called one farad (1 F), in honor of the 19th-century 

English physicist Michael Faraday. From Eq. (346), one farad is equal to one 

coulomb per volt        : 
 

                                 
 

The greater the capacitance   of a capacitor, the greater the magnitude   of 

charge on either conductor for a given potential difference   and hence the greater 

the amount of stored energy. (Remember that potential is potential energy per unit 

charge.) Thus capacitance is a measure of the ability of a capacitor to store 

energy. We will see that the value of the capacitance depends only on the shapes 

and sizes of the conductors and on the nature of the insulating material between 

them. (The above remarks about capacitance being independent of   and   do not 

apply to certain special types of insulating materials. We won’t discuss these 

materials in this book, however.) 

We can calculate the capacitance   of a given capacitor by finding the 

potential difference   between the conductors for a given magnitude of charge   

and then using Eq. (346). For now we’ll consider only capacitors in vacuum; that 

is, we’ll assume that the conductors that make up the capacitor are separated by 

empty space. 

The simplest form of capacitor consists of two parallel conducting plates, 

each with area  , separated by a distance   that is small in comparison with their 

dimensions (see fig. 214a). When the plates are charged, the electric field is almost 

completely localized in the region between the plates (see fig. 214b). As we 

discussed the field between such plates is essentially uniform, and the charges on 

the plates are uniformly distributed over their opposing surfaces. We call this 

arrangement a parallel-plate capacitor. 
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Figure 214- A charged parallel-plate capacitor 

 

We worked out the electric-field magnitude for this arrangement using the 

principle of superposition of electric fields and again using Gauss’s law. It would 

be a good idea to review those examples. We found that       , where   is the 

magnitude (absolute value) of the surface charge density on each plate. This is 

equal to the magnitude of the total charge   on each plate divided by the area   of 

the plate, or       so the field magnitude   can be expressed as 

 

  
 

  
 

 

   
 

(347) 
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The field is uniform and the distance between the plates is  , so the potential 

difference (voltage) between the two plates is 

 

     
  

   
 

(348) 

 

From this we see that the capacitance   of a parallel-plate capacitor in vacuum is 

 

  
 

 
   

 

 
 

(349) 

 

The capacitance depends only on the geometry of the capacitor; it is directly 

proportional to the area   of each plate and inversely proportional to their 

separation  . The quantities   and   are constants for a given capacitor, and is    a 

universal constant. Thus in vacuum the capacitance   is a constant independent of 

the charge on the capacitor or the potential difference between the plates. If one of 

the capacitor plates is flexible, the capacitance C changes as the plate separation d 

changes. This is the operating principle of a condenser microphone. 

When matter is present between the plates, its properties affect the 

capacitance. Meanwhile, we remark that if the space contains air at atmospheric 

pressure instead of vacuum, the capacitance differs from the prediction of Eq. 

(349) by less than 0.06%. 

In Eq. (349), if   is in square meters and   in meters,   is in farads. The 

units    of are           so we see that 

 

    
  

    
  

  

 
 

 

Because           (energy per unit charge), this is consistent with our definition 

         . Finally, the units of    can be expressed as   
  

    
      , so 

 

                  
 

This relationship is useful in capacitance calculations, and it also helps us to verify 

that Eq. (349) is dimensionally consistent. 

One farad is a very large capacitance, as the following example shows. In 

many applications the most convenient units of capacitance are the microfarad 

              and the picofarad               . For example, the flash unit 

in a point-and-shoot camera uses a capacitor of a few hundred microfarads(see fig. 

215), while capacitances in a radio tuning circuit are typically from 10 to 100 

picofarads. 
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Figure 215 – A commercial capacitor is labelled with value of its capacitance. For 

these capacitors,                          

 

For any capacitor in vacuum, the capacitance   depends only on the shapes, 

dimensions, and separation of the conductors that make up the capacitor. If the 

conductor shapes are more complex than those of the parallel-plate capacitor, the 

expression for capacitance is more complicated than in Eq. (349). In the following 

examples we show how to calculate   for two other conductor geometries. 

Capacitors are manufactured with certain standard capacitances and working 

voltages. However, these standard values may not be the ones you actually need in 

a particular application. You can obtain the values you need by combining 

capacitors; many combinations are possible, but the simplest combinations are a 

series connection and a parallel connection. 

Figure 216a is a schematic diagram of a series connection. Two capacitors 

are connected in series (one after the other) by conducting wires between points a 

and b. Both capacitors are initially uncharged. When a constant positive potential 

difference   is applied between points a and b the capacitors become charged; the 

figure shows that the charge on all conducting plates has the same magnitude. To 

see why, note first that the top plate of    acquires a positive charge  . The electric 

field of this positive charge pulls negative charge up to the bottom plate of    until 

all of the field lines that begin on the top plate end on the bottom plate. This 

requires that the bottom plate have charge   . These negative charges had to 

come from the top plate of   , which becomes positively charged with charge   . 

This positive charge then pulls negative charge    from the connection at point b 

onto the bottom plate of   .The total charge on the lower plate of    and the upper 

plate of    together must always be zero because these plates aren’t connected to 

anything except each other. Thus in a series connection the magnitude of charge 

on all plates is the same. 

Referring to Fig. 216a, we can write the potential differences between points 

a and c, c and b,  and a and b as 
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(350) 

 

              
 

  
 

 

  
  

(351) 

 

and so 

 
 

 
 

 

  
 

 

  
 

(352) 

 

Following a common convention, we use the symbols       and   to denote the 

potential differences     (across the first capacitor),     (across the second 

capacitor), and     (across the entire combination of capacitors), respectively. 

 

 
Figure 216 – A series (left) and parallel (right) connection of two capacitors 

 

The equivalent capacitance     of the series combination is defined as the 

capacitance of a single capacitor for which the charge   is the same as for the 



300 
 

combination, when the potential difference   is the same. In other words, the 

combination can be replaced by an equivalent capacitor of capacitance    .For 

such a capacitor, shown in Fig. 216b, 

 

    
 

 
 

(353) 

or 
 

   
 
 

 
 

(354) 

 

Combining Eqs. (352) and (354), we find 

 
 

   
 

 

  
 

 

  
 

(355) 

 

We can extend this analysis to any number of capacitors in series. We find the 

following result for the reciprocal of the equivalent capacitance: 

 
 

   
 

 

  
 

 

  
 

 

  
   

(356) 

 

The reciprocal of the equivalent capacitance of a series combination equals 

the sum of the reciprocals of the individual capacitances. In a series connection 

the equivalent capacitance is always less than any individual capacitance. 

The arrangement shown in Fig. 216a is called a parallel connection. Two 

capacitors are connected in parallel between points a and b. In this case the upper 

plates of the two capacitors are connected by conducting wires to form an 

equipotential surface, and the lower plates form another. Hence in a parallel 

connection the potential difference for all individual capacitors is the same and is 

equal to      . The charges    and    are not necessarily equal, however, since 

charges can reach each capacitor independently from the source (such as a battery) 

of the voltage    . The charges are 

 

       (357) 

or 

       (368) 

 

The total charge   of the combination, and thus the total charge on the equivalent 

capacitor, is 

 

                 (359) 

 

so 
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(360) 

 

The parallel combination is equivalent to a single capacitor with the same total 

charge         and potential difference   as the combination (see fig. 216b). 

The equivalent capacitance of the combination,     is the same as the capacitance 

    of this single equivalent capacitor. So from Eq. (360), 

 

          (361) 

 

In the same way we can show that for any number of capacitors in parallel, 

 

                (362) 

 

The equivalent capacitance of a parallel combination equals the sum of the 

individual capacitances. In a parallel connection the equivalent capacitance is 

always greater than any individual capacitance. 
 

3.4.2 Energy storage in capacitors and electric-field energy 

 

Many of the most important applications of capacitors depend on their 

ability to store energy. The electric potential energy stored in a charged capacitor is 

just equal to the amount of work required to charge it—that is, to separate opposite 

charges and place them on different conductors. When the capacitor is discharged, 

this stored energy is recovered as work done by electrical forces. 

We can calculate the potential energy    of a charged capacitor by 

calculating the work   required to charge it. Suppose that when we are done 

charging the capacitor, the final charge   is and the final potential difference is  , 

From Eq. (346) these quantities are related by 

 

  
 

 
 

(363) 

 

Let   and   be the charge and potential difference, respectively, at an intermediate 

stage during the charging process; then      . At this stage the work    

required to transfer an additional element of charge    is 

 

       
   

 
 

(364) 

 

The total work   needed to increase the capacitor charge   from zero to a final 

value   is 
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(365) 

 

This is also equal to the total work done by the electric field on the charge when 

the capacitor discharges. Then   decreases from an initial value   to zero as the 

elements of charge    “fall” through potential differences   that vary from   down 

to zero. 

If we define the potential energy of an uncharged capacitor to be zero, then 

  in Eq. (365) is equal to the potential energy    of the charged capacitor. The 

final stored charge is     , so we can express    (which is equal to  ) as 

 

   
  

  
 
 

 
    

 

 
   

(366) 

 

When   is in coulombs,   in farads (coulombs per volt), and   in volts (joules per 

coulomb),    is in joules. 

The last form of Eq. (366),    
 

 
  , shows that the total work   required 

to charge the capacitor is equal to the total charge   multiplied by the average 

potential difference 
 

 
  during the charging process. 

The expression    
  

  
 in Eq. (366) shows that a charged capacitor is the 

electrical analog of a stretched spring with elastic potential energy    
   

 
. The 

charge   is analogous to the elongation   and the reciprocal of the capacitance, 

   , is analogous to the force constant  . The energy supplied to a capacitor in the 

charging process is analogous to the work we do on a spring when we stretch it. 

Equations (365) and (366) tell us that capacitance measures the ability of a 

capacitor to store both energy and charge. If a capacitor is charged by connecting it 

to a battery or other source that provides a fixed potential difference  , then 

increasing the value of   gives a greater charge      and a greater amount of 

stored energy    
  

  
. If instead the goal is to transfer a given quantity of charge 

  from one conductor to another, Eq. (365) shows that the work   required is 

inversely proportional to  ; the greater the capacitance, the easier it is to give a 

capacitor a fixed amount of charge. 

We can charge a capacitor by moving electrons directly from one plate to 

another. This requires doing work against the electric field between the plates. 

Thus we can think of the energy as being stored in the field in the region between 

the plates. To develop this relationship, let’s find the energy per unit volume in the 

space between the plates of a parallel-plate capacitor with plate area   and 

separation  . We call this the energy density, denoted by  . From Eq. (366) the 
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total stored potential energy is 
 

 
    and the volume between the plates is just 

hence the energy density is 

 

                 

 
 
   

  
 

(367) 

 

From Eq. (349) the capacitance   is given by        . The potential difference 

  is related to the electric-field magnitude   by     . If we use these 

expressions in Eq. (367), the geometric factors   and   cancel, and we find 

 

  
 

 
   

  
(368) 

 

Although we have derived this relationship only for a parallel-plate capacitor, it 

turns out to be valid for any capacitor in vacuum and indeed for any electric field 

configuration in vacuum. This result has an interesting implication. We think of 

vacuum as space with no matter in it, but vacuum can nevertheless have electric 

fields and therefore energy. Thus “empty” space need not be truly empty after all. 

We will use this idea and Eq. (368) in Chapter 32 in connection with the energy 

transported by electromagnetic waves. 

 

3.4.3 Dielectrics 

 

Most capacitors have a nonconducting material, or dielectric, between their 

conducting plates. A common type of capacitor uses long strips of metal foil for 

the plates, separated by strips of plastic sheet such as Mylar. A sandwich of these 

materials is rolled up, forming a unit that can provide a capacitance of several 

microfarads in a compact package (see fig. 217). 

 

 
Figure 217 – A common type of capacitor uses dielectric sheets to separate the 

conductors 
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Placing a solid dielectric between the plates of a capacitor serves three 

functions. First, it solves the mechanical problem of maintaining two large metal 

sheets at a very small separation without actual contact. Second, using a dielectric 

increases the maximum possible potential difference between the capacitor plates. 

Any insulating material, when subjected to a sufficiently large electric field, 

experiences a partial ionization that permits conduction through it. This is called 

dielectric breakdown. Many dielectric materials can tolerate stronger electric 

fields without breakdown than can air. Thus using a dielectric allows a capacitor to 

sustain a higher potential difference   and so store greater amounts of charge and 

energy. 

Third, the capacitance of a capacitor of given dimensions is greater when 

there is a dielectric material between the plates than when there is vacuum. We can 

demonstrate this effect with the aid of a sensitive electrometer, a device that 

measures the potential difference between two conductors without letting any 

appreciable charge flow from one to the other. Figure 218a shows an electrometer 

connected across a charged capacitor, with magnitude of charge   on each plate 

and potential difference   . When we insert an uncharged sheet of dielectric, such 

as glass, paraffin, or polystyrene, between the plates, experiment shows that the 

potential difference decreases to a smaller value   (see fig. 218b). When we 

remove the dielectric, the potential difference returns to its original value    

showing that the original charges on the plates have not changed. 

 

 
Figure 218 – Effect of dielectric between the plates of a parallel-plate 

capacitor. (a) With a given charge, the potential difference is   . (b) With the same 

charge but with a dielectric between the plates, the potential difference   is smaller 

than    

 

The original capacitance    is given by         and the capacitance   

with the dielectric present is      . The charge   is the same in both cases, and 
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  is less than   , so we conclude that the capacitance   with the dielectric present 

is greater than   . When the space between plates is completely filled by the 

dielectric, the ratio of   to    (equal to the ratio of    to  ) is called the dielectric 

constant of the material,  : 

 

  
 

  
 

(369) 

 

When the charge is constant,           and           In this case, Eq. 

(369) can be rewritten as 

 

  
  

 
 

(370) 

 

With the dielectric present, the potential difference for a given charge   is reduced 

by a factor  . 

The dielectric constant   is a pure number. Because   is always greater than 

     is always greater than unity. Some representative values of   are given in 

Table 11. For vacuum,     by definition. For air at ordinary temperatures and 

pressures,   is about 1.0006; this is so nearly equal to 1 that for most purposes an 

air capacitor is equivalent to one in vacuum. Note that while water has a very large 

value of  , it is usually not a very practical dielectric for use in capacitors.  

The reason is that while pure water is a very poor conductor, it is also an 

excellent ionic solvent. Any ions that are dissolved in the water will cause charge 

to flow between the capacitor plates, so the capacitor discharges. 

 

Table 11 - Values of dielectric constant   at     

Material   Material   

Vacuum 1 Polyvinyl chloride 3.18 

Air (1 atm) 1.00059 Plexiglas 3.4 

Air (100 atm) 1.0548 Glass 5-10 

Teflon 2.1 Neoprene 6.7 

Polyethylene 2.25 Germanium 16 

Benzene 2.28 Glycerin 42.5 

Mica 3-6 Water 80.4 

Mylar 3.1 Strontium titanate 310 

 

No real dielectric is a perfect insulator. Hence there is always some leakage 

current between the charged plates of a capacitor with a dielectric. We tacitly 

ignored this effect when we derived expressions for the equivalent capacitances of 

capacitors in series, Eq. (356), and in parallel, Eq. (362). But if a leakage current 

flows for a long enough time to substantially change the charges from the values 

we used to derive Eqs. (356) and (362), those equations may no longer be accurate. 
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When a dielectric material is inserted between the plates while the charge is 

kept constant, the potential difference between the plates decreases by a factor  . 

Therefore the electric field between the plates must decrease by the same factor. If 

   is the vacuum value and   is the value with the dielectric, then 

 

  
  
 

 
(371) 

 

Since the electric-field magnitude is smaller when the dielectric is present, the 

surface charge density (which causes the field) must be smaller as well. The 

surface charge on the conducting plates does not change, but an induced charge of 

the opposite sign appears on each surface of the dielectric (see fig. 219). The 

dielectric was originally electrically neutral and is still neutral; the induced surface 

charges arise as a result of redistribution of positive and negative charge 

within the dielectric material, a phenomenon called polarization. We will assume 

that the induced surface charge is directly proportional to the electric-field 

magnitude   in the material; this is indeed the case for many common dielectrics. 

(This direct proportionality is analogous to Hooke’s law for a spring.) In that case, 

  is a constant for any particular material. When the electric field is very strong or 

if the dielectric is made of certain crystalline materials, the relationship between 

induced charge and the electric field can be more complex; we won’t consider such 

cases here. 

 

 
Figure 219 – Electric field lines with (a) vacuum between the plates and (b) 

dielectric between the plates 
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We can derive a relationship between this induced surface charge and the 

charge on the plates. Let’s denote the magnitude of the charge per unit area 

induced on the surfaces of the dielectric (the induced surface charge density) by. 

The magnitude of the surface charge density on the capacitor plates is , as usual. 

Then the net surface charge on each side of the capacitor has magnitude        
as shown in Fig. 219b. As known, the field between the plates is related to the net 

surface charge density by          . Without and with the dielectric, 

respectively, we have 

 

   
 

  
 
    
  

 (372) 

 

Using these expressions in Eq. (371) and rearranging the result, we find 

 

       
 

 
  

(373) 

 

This equation shows that when   is very large,    is nearly as large as  . In this 

case,    nearly cancels   and the field and potential difference are much smaller 

than their values in vacuum. 

The product     is called the permittivity of the dielectric, denoted by  : 

 

      (374) 

 

In terms   of we can express the electric field within the dielectric as 

 

  
 

 
 (375) 

 

The capacitance when the dielectric is present is given by 

 

         
 

 
  

 

 
 

(376) 

 

We can repeat the derivation of Eq. (368) for the energy density in an 

electric field for the case in which a dielectric is present. The result is 

 

  
 

 
    

  
 

 
    

(377) 

 

In empty space, where          and Eqs. (376) and (377) reduce to Eqs. 

(349) and (368), respectively, for a parallel-plate capacitor in vacuum. For this 

reason,    is sometimes called the “permittivity of free space” or the “permittivity 

of vacuum.” Because   is a pure number,   and    have the same units,         

or    . 
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Equation (376) shows that extremely high capacitances can be obtained with 

plates that have a large surface area   and are separated by a small distance   by a 

dielectric with a large value of  . In an electrolytic double-layer capacitor, tiny 

carbon granules adhere to each plate: The value of is the combined surface area of 

the granules, which can be tremendous. The plates with granules attached are 

separated by a very thin dielectric sheet. A capacitor of this kind can have a 

capacitance of 5000 farads yet fit in the palm of your hand. 

Several practical devices make use of the way in which a capacitor responds 

to a change in dielectric constant. One example is an electric stud finder, used by 

home repair workers to locate metal studs hidden behind a wall’s surface. It 

consists of a metal plate with associated circuitry. The plate acts as one half of a 

capacitor, with the wall acting as the other half. If the stud finder moves over a 

metal stud, the effective dielectric constant for the capacitor changes, changing the 

capacitance and triggering a signal. 

We mentioned earlier that when a dielectric is subjected to a sufficiently 

strong electric field, dielectric breakdown takes place and the dielectric becomes a 

conductor. This occurs when the electric field is so strong that electrons are ripped 

loose from their molecules and crash into other molecules, liberating even more 

electrons. This avalanche of moving charge forms a spark or arc discharge. 

Lightning is a dramatic example of dielectric breakdown in air. 

Because of dielectric breakdown, capacitors always have maximum voltage 

ratings. When a capacitor is subjected to excessive voltage, an arc may form 

through a layer of dielectric, burning or melting a hole in it. This arc creates a 

conducting path (a short circuit) between the conductors. If a conducting path 

remains after the arc is extinguished, the device is rendered permanently useless as 

a capacitor. 

The maximum electric-field magnitude that a material can withstand without 

the occurrence of breakdown is called its dielectric strength. This quantity is 

affected significantly by temperature, trace impurities, small irregularities in the 

metal electrodes, and other factors that are difficult to control. For this reason we 

can give only approximate figures for dielectric strengths. The dielectric strength 

of dry air is about          . Table 12 lists the dielectric strengths of a few 

common insulating materials. Note that the values are all substantially greater than 

the value for air. For example, a layer of polycarbonate 0.01 mm thick (about the 

smallest practical thickness) has 10 times the dielectric strength of air and can 

withstand a maximum voltage of about                             . 
 

Table 12 – Dielectric constant and dielectric strength of some insulating materials 

Material Dielectric constant,   Dielectric strength,           
Polycarbonade 2.8       

Polyester 3.3       

Polypropylene 2.2       

Polystyrene 2.6       

Pyrex glass 4.7       
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3.5 Direct-current circuits 

 

3.5.1 Resistors in series and parallel 

 

Resistors turn up in all kinds of circuits, ranging from hair dryers and space 

heaters to circuits that limit or divide current or reduce or divide a voltage. Such 

circuits often contain several resistors, so it’s appropriate to consider combinations 

of resistors. A simple example is a string of light bulbs used for holiday 

decorations; each bulb acts as a resistor, and from a circuit-analysis perspective the 

string of bulbs is simply a combination of resistors. 

Suppose we have three resistors with resistances       and   . Figure 220 

shows four different ways in which they might be connected between points a and 

b. When several circuit elements such as resistors, batteries, and motors are 

connected in sequence as in Fig. 220a, with only a single current path between the 

points, we say that they are connected in series. We studied capacitors in series; 

we found that, because of conservation of charge, capacitors in series all have the 

same charge if they are initially uncharged. In circuits we’re often more interested 

in the current, which is charge flow per unit time. 

 

 
Figure 220 – Four different ways of connecting three resistors 

 

The resistors in Fig. 220b are said to be connected in parallel between 

points a and b. Each resistor provides an alternative path between the points. For 
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circuit elements that are connected in parallel, the potential difference is the same 

across each element. We studied capacitors in parallel. 

In Fig. 220c, resistors    and    are in parallel, and this combination is in 

series with   . In Fig. 220d,    and    are in series, and this combination is in 

parallel with   . 

For any combination of resistors we can always find a single resistor that 

could replace the combination and result in the same total current and potential 

difference. For example, a string of holiday light bulbs could be replaced by a 

single, appropriately chosen light bulb that would draw the same current and have 

the same potential difference between its terminals as the original string of bulbs. 

The resistance of this single resistor is called the equivalent resistance of the 

combination. If any one of the networks in Fig. 220 were replaced by its equivalent 

resistance  we could write 

 

         (378) 

or 

    
   

 
 

(379) 

 

where     is the potential difference between terminals a and b of the 

network and I is the current at point a or b. To compute an equivalent resistance, 

we assume a potential difference     across the actual network, compute the 

corresponding current I, and take the ratio 

We can derive general equations for the equivalent resistance of a series or 

parallel combination of resistors. If the resistors are in series, as in Fig. 220a, the 

current I must be the same in all of them. (As we discussed current is not “used up” 

as it passes through a circuit.) Applying      to each resistor, we have 

 

                        (380) 

 

The potential differences across each resistor need not be the same (except for the 

special case in which all three resistances are equal). The potential difference     

across the entire combination is the sum of these individual potential differences: 

 

                            (381) 

 

and so 

 
   

 
          

(382) 

 

The ratio 
   

 
 is, by definition, the equivalent resistance     Therefore 
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             (383) 

 

It is easy to generalize this to any number of resistors: 

 

               (384) 

 

The equivalent resistance of any number of resistors in series equals the sum 

of their individual resistances. 

The equivalent resistance is greater than any individual resistance. 

Let’s compare this result with Eq. (356) for capacitors in series. Resistors in 

series add directly because the voltage across each is directly proportional to its 

resistance and to the common current. Capacitors in series add reciprocally 

because the voltage across each is directly proportional to the common charge but 

inversely proportional to the individual capacitance. 

Resistors in Parallel. If the resistors are in parallel, as in Fig. 220b, the 

current through each resistor need not be the same. But the potential difference 

between the terminals of each resistor must be the same and equal to    . 

(Remember that the potential difference between any two points does not depend 

on the path taken between the points.) Let’s call the currents in the three resistors 

      and   .Then from      , 

 

   
   

  
    

   

  
    

   

  
 

(385) 

 

In general, the current is different through each resistor. Because charge is not 

accumulating or draining out of point a, the total current I must equal the sum of 

the three currents in the resistors: 

 

               
 

  
 

 

  
 

 

  
  

(386) 

or 
 

   
 

 

  
 

 

  
 

 

  
 

(387) 

 

But by the definition of the equivalent resistance                , so 

 
 

   
 

 

  
 

 

  
 

 

  
 

(388) 

 

Again it is easy to generalize to any number of resistors in parallel: 

 
 

   
 

 

  
 

 

  
 

 

  
   

(389) 
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For any number of resistors in parallel, the reciprocal of the equivalent 

resistance equals the sum of the reciprocals of their individual resistances. 

The equivalent resistance is always less than any individual resistance. 

Compare this with Eq. (362) for capacitors in parallel. Resistors in parallel 

add reciprocally because the current in each is proportional to the common voltage 

across them and inversely proportional to the resistance of each. Capacitors in 

parallel add directly because the charge on each is proportional to the common 

voltage across them and directly proportional to the capacitance of each. 

For the special case of two resistors in parallel, 

 
 

   
 

 

  
 

 

  
 
     

    
 

(390) 

 

and 

    
    

     
 

(391) 

 

Because              , it follows that 

 
  
  
 
  

  
 

(392) 

 

This shows that the currents carried by two resistors in parallel are inversely 

proportional to their resistances. More current goes through the path of least 

resistance. 

 

3.5.2 Kirchhoff’s Rules 

 

Many practical resistor networks cannot be reduced to simple series-parallel 

combinations. Figure 221a shows a dc power supply with emf    charging a 

battery with a smaller emf    and feeding current to a light bulb with resistance R. 

Figure 221b is a “bridge” circuit, used in many different types of measurement and 

control systems. To compute the currents in these networks, we’ll use the 

techniques developed by the German physicist Gustav Robert Kirchhoff (1824–

1887). 
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Figure 221 – Two networks that cannot be reduced to simple series-parallel 

combination of resistors 

 

First, here are two terms that we will use often. A junction in a circuit is a 

point where three or more conductors meet. A loop is any closed conducting path. 

In Fig. 221a points a and b are junctions, but points c and d are not; in Fig. 221b 

the points a, b, c, and d are junctions, but points e and f are not. The blue lines in 

Figs. 221a and 221b show some possible loops in these circuits. 

Kirchhoff’s rules are the following two statements: 

Kirchhoff’s junction rule: The algebraic sum of the currents into any junction is 

zero. That is, 

 

      
(393) 

 

Kirchhoff’s loop rule: The algebraic sum of the potential differences in any loop, 

including those associated with emfs and those of resistive elements, must equal 

zero. That is, 

 

      
(394) 
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The junction rule is based on conservation of electric charge. No charge can 

accumulate at a junction, so the total charge entering the junction per unit time 

must equal the total charge leaving per unit time (see fig. 222a). Charge per unit 

time is current, so if we consider the currents entering a junction to be positive and 

those leaving to be negative, the algebraic sum of currents into a junction must be 

zero. It’s like a T branch in a water pipe (see fig. 222b); if you have a total of 1 

liter per minute coming in the two pipes, you can’t have 3 liters per minute going 

out the third pipe. We may as well confess that we used the junction rule (without 

saying so) in Section 26.1 in the derivation of Eq. (389) for resistors in parallel. 

 

 
Figure 222 – Kirchhoffs’s junction states that as much current flows into a junction 

as flows out of it 

 

The loop rule is a statement that the electrostatic force is conservative. 

Suppose we go around a loop, measuring potential differences across successive 

circuit elements as we go. When we return to the starting point, we must find that 

the algebraic sum of these differences is zero; otherwise, we could not say that the 

potential at this point has a definite value. 

In applying the loop rule, we need some sign conventions. Problem-Solving 

Strategy 26.2 describes in detail how to use these, but here’s a quick overview. We 

first assume a direction for the current in each branch of the circuit and mark it on 

a diagram of the circuit. Then, starting at any point in the circuit, we imagine 

traveling around a loop, adding emfs and IR terms as we come to them. When we 

travel through a source in the direction from – to  , the emf is considered to be 

positive; when we travel from   to  , the emf is considered to be negative (see fig. 

223a). When we travel through a resistor in the same direction as the assumed 

current, the IR term is negative because the current goes in the direction of 

decreasing potential. When we travel through a resistor in the direction opposite to 

the assumed current, the IR term is positive because this represents a rise of 

potential (see fig. 223b). 

 



315 
 

 
Figure 223 – Use these sign conservations when you apply Kirchhoffs’s loop rule. 

In each part of the figure “Travel” is the direction that we imaging going around 

the loop, which is not necessary the direction of the current 

 

Kirchhoff’s two rules are all we need to solve a wide variety of network 

problems. Usually, some of the emfs, currents, and resistances are known, and 

others are unknown. We must always obtain from Kirchhoff’s rules a number of 

independent equations equal to the number of unknowns so that we can solve the 

equations simultaneously. Often the hardest part of the solution is not 

understanding the basic principles but keeping track of algebraicsigns! 

 

3.5.3 Electrical measuring instruments 

 

We’ve been talking about potential difference, current, and resistance for 

two chapters, so it’s about time we said something about how to measure these 

quantities. Many common devices, including car instrument panels, battery 

chargers, and inexpensive electrical instruments, measure potential difference 

(voltage), current, or resistance using a d’Arsonval galvanometer (see fig. 224). In 

the following discussion we’ll often call it just a meter. A pivoted coil of fine wire 

is placed in the magnetic field of a permanent magnet (see fig. 225). Attached to 

the coil is a spring, similar to the hairspring on the balance wheel of a watch. In the 

equilibrium position, with no current in the coil, the pointer is at zero. When there 

is a current in the coil, the magnetic field exerts a torque on the coil that is 

proportional to the current. As the coil turns, the spring exerts a restoring torque 

that is proportional to the angular displacement. 

 



316 
 

 
Figure 224 – This ammeter (top) and voltmeter (bottom) are both d’Arsonval 

galvanometers. The difference has to do with their internal connections 

 

 
Figure 225 – A d’Arsonval galvanometer, showing a pivoted coil with attached 

pointer, a permanent magnet supplying a magnetic field that is uniform in 

magnitude, and a spring to provide restoring torque, which opposes magnetic-field 

torque 
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Thus the angular deflection of the coil and pointer is directly proportional to 

the coil current, and the device can be calibrated to measure current. The maximum 

deflection, typically     or so, is called full-scale deflection. The essential 

electrical characteristics of the meter are the current     required for full-scale 

deflection (typically on the order of       to 10 mA) and the resistance    of the 

coil (typically on the order of 10 to       ). 

The meter deflection is proportional to the current in the coil. If the coil 

obeys Ohm’s law, the current is proportional to the potential difference between 

the terminals of the coil, and the deflection is also proportional to this potential 

difference. For example, consider a meter whose coil has a resistance          

and that deflects full scale when the current in its coil is         . The 

corresponding potential difference for full-scale deflection is 

 

                                

 

Ammeters. A current-measuring instrument is usually called an ammeter (or 

milliammeter, microammeter, and so forth, depending on the range). An ammeter 

always measures the current passing through it. An ideal ammeter would have zero 

resistance, so including it in a branch of a circuit would not affect the current in 

that branch. Real ammeters always have some finite resistance, but it is always 

desirable for an ammeter to have as little resistance as possible. 

We can adapt any meter to measure currents that are larger than its full-scale 

reading by connecting a resistor in parallel with it (see fig. 226a) so that some of 

the current bypasses the meter coil. The parallel resistor is called a shunt resistor or 

simply a shunt, denoted as    . 

Suppose we want to make a meter with full-scale current     and coil 

resistance    into an ammeter with full-scale reading   . To determine the shunt 

resistance     needed, note that at full-scale deflection the total current through the 

parallel combination is   , the current through the coil of the meter is    , and the 

current through the shunt is the difference .        The potential difference     is 

the same for both paths, so 

 

                  (395) 

 

Voltmeters. This same basic meter may also be used to measure potential 

difference or voltage. A voltage-measuring device is called a voltmeter. A 

voltmeter always measures the potential difference between two points, and its 

terminals must be connected to these points. An ideal voltmeter would have 

infinite resistance, so connecting it between two points in a circuit would not alter 

any of the currents. Real voltmeters always have finite resistance, but a voltmeter 

should have large enough resistance that connecting it in a circuit does not change 

the other currents appreciably. 
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The voltage across the meter coil at full-scale deflection is only       

                      . We can extend this range by connecting a resistor 

   in series with the coil (see fig. 226b). Then only a fraction of the total potential 

difference appears across the coil itself, and the remainder appears across the coil 

itself, and the remainder appears across   . For a voltmeter with full-scale reading 

  , we need a series resistor    in Fig. 226b such that 

 

              (396) 

 

 
Figure 226 – Using the same meter to measure (a) current and (b) voltage 

 

Ammeters and voltmeters in combination. A voltmeter and an ammeter 

can be used together to measure resistance and power. The resistance R of a 

resistor equals the potential difference     between its terminals divided by the 

current I; that is,        . The power input P to any circuit element is the 

product of the potential difference across it and the current through it:       . In 

principle, the most straightforward way to measure R or P is to measure     and I 

simultaneously. 

With practical ammeters and voltmeters this isn’t quite as simple as it seems. 

In Fig. 227a, ammeter A reads the current I in the resistor R. Voltmeter V, 

however, reads the sum of the potential difference     across the resistor and the 

potential difference     across the ammeter. If we transfer the voltmeter terminal 

from c to b, as in Fig. 227b, then the voltmeter reads the potential difference     

correctly, but the ammeter now reads the sum of the current I in the resistor and the 

current    in the voltmeter. Either way, we have to correct the reading of one 

instrument or the other unless the corrections are small enough to be negligible. 
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Figure 227 – Ammeter-voltmeter method for measuring resistance 

 

Ohmmeters. An alternative method for measuring resistance is to use a 

d’Arsonval meter in an arrangement called an ohmmeter. It consists of a meter, a 

resistor, and a source (often a flashlight battery) connected in series (see fig. 228). 

The resistance R to be measured is connected between terminals x and y. 

 

 
Figure 228 – Ohmmeter circuit. The resistor    has a variable resistance, as is 

indicated by the arrow through the resistor symbol. 

 

The series resistance    is variable; it is adjusted so that when terminals x 

and y are short-circuited (that is, when    ), the meter deflects full scale. When 

nothing is connected to terminals x and y, so that the circuit between x and y is 

open (that is, when    ), there is no current and hence no deflection. For any 

intermediate value of R the meter deflection depends on the value of R, and the 

meter scale can be calibrated to read the resistance R directly. Larger currents 
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correspond to smaller resistances, so this scale reads backward compared to the 

scale showing the current. 

In situations in which high precision is required, instruments containing 

d’Arsonval meters have been supplanted by electronic instruments with direct 

digital readouts. Digital voltmeters can be made with extremely high internal 

resistance, of the order of       . Figure 229 shows a digital multimeter, an 

instrument that can measure voltage, current, or resistance over a wide range. 

 

 
Figure 229 – This digital multimeter can be as a voltmeter (red arc), ammeter 

(yellow arc), or ohmmeter (green arc) 

 

The Potentiometer. The potentiometer is an instrument that can be used to 

measure the emf of a source without drawing any current from the source; it also 

has a number of other useful applications. Essentially, it balances an unknown 

potential difference against an adjustable, measurable potential difference. 

The principle of the potentiometer is shown schematically in Fig. 230a. A 

resistance wire ab of total resistance     is permanently connected to the terminals 

of a source of known emf .    A sliding contact c is connected through the 

galvanometer G to a second source whose emf     is to be measured. As contact c 

is moved along the resistance wire, the resistance     between points c and b 

varies; if the resistance wire is uniform, is proportional to the length of wire 

between c and b. To determine the value of     contact c is moved until a position 

is found at which the galvanometer shows no deflection; this corresponds to zero 

current passing through    . With    , Kirchhoff’s loop rule gives 

 

        (397) 
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With   , the current I produced by the emf     has the same value no matter what 

the value of the emf   . We calibrate the device by replacing    by a source of 

known emf; then any unknown emf    can be found by measuring the length of 

wire cb for which     . Note that for this to work,     must be greater than   . 

 

 
Figure 230  – A potentiometer 

 

The term potentiometer is also used for any variable resistor, usually having 

a circular resistance element and a sliding contact controlled by a rotating shaft and 

knob. The circuit symbol for a potentiometer is shown in Fig. 230b. 

 

3.5.4 R-C circuits 

 

In the circuits we have analyzed up to this point, we have assumed that all 

the emfs and resistances are constant (time independent) so that all the potentials, 

currents, and powers are also independent of time. But in the simple act of 

charging or discharging a capacitor we find a situation in which the currents, 

voltages, and powers do change with time. 

Many devices incorporate circuits in which a capacitor is alternately charged 

and discharged. These include flashing traffic lights, automobile turn signals, and 

electronic flash units. Understanding what happens in such circuits is thus of great 

practical importance. 

Figure 231 shows a simple circuit for charging a capacitor. A circuit such as 

this that has a resistor and a capacitor in series is called an R-C circuit. We 
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idealize the battery (or power supply) to have a constant emf ℰ and zero internal 

resistance       and we neglect the resistance of all the connecting conductors. 

We begin with the capacitor initially uncharged (see fig. 231a); then at some 

initial time     we close the switch, completing the circuit and permitting current 

around the loop to begin charging the capacitor (see fig. 231b). For all practical 

purposes, the current begins at the same instant in every conducting part of the 

circuit, and at each instant the current is the same in every part. 

 

 
Figure 231 – Charging capacitor. (a) Just before the switch is closed, the charge is 

  zero. (b) When the switch closes (at    ), the current jumps from zero to    . 

As time passes,   approaches    and the current   approaches zero 

 

Because the capacitor in Fig. 231 is initially uncharged, the potential 

difference     across it is zero at    . At this time, from Kirchhoff’s loop law, 

the voltage     across the resistor R is equal to the battery emf ℰ. The initial 

      current through the resistor, which we will call   , is given by Ohm’s law: 

            . 
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As the capacitor charges, its voltage     increases and the potential 

difference     across the resistor decreases, corresponding to a decrease in current. 

The sum of these two voltages is constant and equal to ℰ. After a long time the 

capacitor becomes fully charged, the current decreases to zero, and the potential 

difference     across the resistor becomes zero. Then the entire battery emf ℰ 

appears across the capacitor and      . 

Let q represent the charge on the capacitor and i the current in the circuit at 

some time t after the switch has been closed. We choose the positive direction for 

the current to correspond to positive charge flowing onto the left-hand capacitor 

plate, as in Fig. 231b. The instantaneous potential differences     and     are 

 

       (398) 

 

    
 

 
 

(399) 

 

 

Using these in Kirchhoff’s loop rule, we find 

 

     
 

 
   

(400) 

 

The potential drops by an amount iR as we travel from a to b and by 
 

 
 as we travel 

from b to c. Solving Eq. (26.9) for i, we find 

 

  
 

 
 

 

  
 

(401) 

 

At time      , when the switch is first closed, the capacitor is uncharged, and so 

   . Substituting     into Eq. (401), we find that the initial current    is given 

by as       , we have already noted. If the capacitor were not in the circuit, the 

last term in Eq. (401) would not be present; then the current would be constant and 

equal to    . 

As the charge q increases, the term 
 

  
 becomes larger and the capacitor 

charge approaches its final value, which we will call   . The current decreases and 

eventually becomes zero. When     Eq. (401) gives 

 
 

 
 

  

  
       

(402) 

 

Note that the final charge    does not depend on R. 

Figure 232 shows the current and capacitor charge as functions of time. At 

the instant the switch is closed      , the current jumps from zero to its initial 
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value        after that, it gradually approaches zero. The capacitor charge starts 

at zero and gradually approaches the final value given by Eq. (402),      . 

 

 
Figure 232 – Current  and capacitor charge   as function of time for the circuit of 

Fig.231. The initial current    and initial capacitor charge is zero. The current 

asymptotically approaches zero, and the capacitor charge asymptotically 

approaches a final value of    

 

We can derive general expressions for the charge q and current i as functions 

of time. With our choice of the positive direction for current (see fig. 231b), i 

equals the rate at which positive charge arrives at the left-hand (positive) plate of 

the capacitor, so Making this substitution in Eq. (401), we have 

 
  

  
 
 

 
 

 

  
  

 

  
       

(403) 
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We can rearrange this to 

 
  

    
  

  

  
 

(404) 

 

and then integrate both sides. We change the integration variables to    and    so 

that we can use q and t for the upper limits. The lower limits are      and    
 : 

 

 
   

    

 

 

   
   

  

 

 

 

(405) 

 

When we carry out the integration, we get 

 

   
    

   
   

 

  
 

(406) 

 

Exponentiating both sides (that is, taking the inverse logarithm) and solving for q, 

we find 

 
    

   
   

 
   

(407) 

         
 
           

 
    

(408) 

 

The instantaneous current i is just the time derivative of Eq. (408): 

 

  
  

  
 
 

 
  

 
      

 
 
   

(409) 

 

The charge and current are both exponential functions of time. Figure 232a is a 

graph of Eq. (409) and Fig. 232b is a graph of Eq. (408). 

Time Constant 

After a time equal to RC, the current in the R-C circuit has decreased to     

(about 0.368) of its initial value. At this time, the capacitor charge has reached 

   
 

 
        of its final value      . The product RC is therefore a 

measure of how quickly the capacitor charges. We call RC the time constant, or 

the relaxation time, of the circuit, denoted by  : 

 

     (410) 

 

When   is small, the capacitor charges quickly; when it is larger, the 

charging takes more time. If the resistance is small, it’s easier for current to flow, 
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and the capacitor charges more quickly. If R is in ohms and C in farads,   is in 

seconds. 

In Fig. 232a the horizontal axis is an asymptote for the curve. Strictly 

speaking, i never becomes exactly zero. But the longer we wait, the closer it gets. 

After a time equal to 10RC, the current has decreased to 0.000045 of its initial 

value. Similarly, the curve in Fig. 232b approaches the horizontal dashed line 

labelled    as an asymptote. The charge q never attains exactly this value, but after 

a time equal to 10RC, the difference between q and is only 0.000045 of   . We 

invite you to verify that the product RC has units of time. 

 

 
Figure 233 – Discharging a capacitor. (a) Before the switch is closed at time    , 

the capacitor charge is    and the current is zero. (b) At time   after the switch is 

closed, the capacitor charge is   and the current is  . The actual current direction is 

opposite to the direction shown;   is negative. After a long time,   and   both 

approach zero 
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Now suppose that after the capacitor in Fig. 232b has acquired a charge   , 

we remove the battery from our R-C circuit and connect points a and c to an open 

switch (see fig. 233a). We then close the switch and at the same instant reset our 

stopwatch to    ; at that time,      .The capacitor then discharges through 

the resistor, and its charge eventually decreases to zero. 

Again let i and q represent the time-varying current and charge at some 

instant after the connection is made. In Fig. 233b we make the same choice of the 

positive direction for current as in Fig. 231b. Then Kirchhoff’s loop rule gives Eq. 

(401) but with     that is, 

 

  
  

  
   

 

  
 

(411) 

 

The current i is now negative; this is because positive charge q is leaving the 

lefthand capacitor plate in Fig. 233b, so the current is in the direction opposite to 

that shown in the figure. At time    , when     , the initial current is  

         . 

To find q as a function of time, we rearrange Eq. (411), again change the 

names of the variables to    and   , and integrate. This time the limits for    are    

to  . We get 

 

 
   

  

 

  

  
 

  
     

 

 

 

(412) 

  
 

  
  

 

  
 

 

     
 

 
   

(413) 

 

The instantaneous current   is the derivative of this with respect to time: 

 

  
  

  
  

  

  
  

 
      

 
 
   

(414) 

 

We graph the current and the charge in Fig. 234; both quantities approach zero 

exponentially with time. Comparing these results with Eqs. (408) and (409), we 

note that the expressions for the current are identical, apart from the sign of   . The 

capacitor charge approaches zero asymptotically in Eq. (412), while the difference 

between q and Q approaches zero asymptotically in Eq. (408). 

Energy considerations give us additional insight into the behavior of an R-C 

circuit. While the capacitor is charging, the instantaneous rate at which the battery 

delivers energy to the circuit is     . The instantaneous rate at which electrical 
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energy is dissipated in the resistor is    , and the rate at which energy is stored in 

the capacitor is          . Multiplying Eq. (26.9) by i, we find 

 

       
  

 
 

(414) 

 

 
Figure 234 Current   and capacitor charge   as function of time for the circuit of 

Fig. 233. The initial current    and the initial capacitor charge is   . Both   and   

asymptotically approach zero 

 

 

This means that of the power    supplied by the battery, part       is dissipated in 

the resistor and part  
  

 
  is stored in the capacitor. 
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The total energy supplied by the battery during charging of the capacitor 

equals the battery emf   multiplied by the total charge   , or    . The total 

energy stored in the capacitor, from Eq. (366), is      . Thus, of the energy 

supplied by the battery, exactly half is stored in the capacitor, and the other half is 

dissipated in the resistor. This half-and-half division of energy doesn’t depend on 

C, R, or  .You can verify this result by taking the integral over time of each of the 

power quantities in Eq. (414). 
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Questions yourself 

 

1. What does mechanics study? Kinematics? Dynamics? Statics? What is a 

mechanical motion? 

2. Give definitions of concepts: a mass point, a distance, a displacement, a 

velocity, an acceleration, a trajectory. 

3. What is a force? Give examples of forces. 

4. Formulate Newton's laws. What is the principle of superposition? 

5. Give definitions of concepts: a mass, a momentum, a solid body, an angular 

momentum,  a work, an energy. 

6. Formulate mechanical energy and momentum conservation’s laws. What is a 

closed system? 

7. Formulate the law of gravity. What is the free fall acceleration? What does it 

equal on the Earth's surface? 

8. Einsteins’s postulates.. What is the value of speed of light in vacuum? 

9. Give definitions of concepts: a simple pendulum, the amplitude, 

wavelength, period, frequency, angular frequency 

10. What is a deformation? Formulate Hooke's law. 

11. What is the ideal fluid? What is called an incompressible fluid? 

12. What does a hydrodynamics study? Hydrostatic? Archimedes' law 

13. Bernoulli equation for an ideal fluid. Stokes’ formula, Poiseuille’ formula 

and Torricelli’s formula 

14. What does molecular physics study? Thermodynamics? 

15. Give definitions of concepts: relative molecular mass, relative molar mass, 

mole, the amount of substance. 

16. What are the thermodynamic parameters? What thermodynamic parameters 

do you know? 

17. What is a thermodynamic process? Equilibrium process? 

18. What is an ideal gas? Isoprocess? Laws of an Ideal gas. 

19. Mendeleev – Clapeyron’s equation. Clapeyron’s equation. The basic 

equation of molecular-kinetic theory of gases. 

20. Formulate thermodynamics’ laws. 

21. Record the first law of thermodynamics for isoprocesses. 

22. What is internal energy? Formulas for work at different iso. What is SI unit 

of the work? 

23. Give definitions of concepts: an engine, heater, refrigerator, efficiency. 

24. Record Fourier’s, Newton’s, and Fick’s equations. 

25. Write down van der Waals’s equation for real gases. What is the critical 

point? What are the critical parameters? 
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26. What is a phase change? What types of phase transformations are there? 

27. Give definitions of concepts: boiling, melting, crystallization, evaporation, 

condensation, sublimation 

28. What is a triple point? Record Clausius-Clapeyron’ equation. 

29. What does electrostatics study? Electrodynamics?  

30.  What is an electric field? What is an electric charge? 

31. The electric charge’s law conservation and the superposition of electrostatic 

fields. 

32. Which device is called a capacitor? What is a capacitance? What is a SI unit 

of a capacitance? 

33. Give definitions of concepts: voltage, current, resistance, electromotive 

force, potential, conductivity, current density 

34. What is a direct current? Alternative current? What is a SI unit of a current? 

35. Write down Ohm's law for the branch circuit, for the complete circuit in 

integral form. Ohm's law in differential form. 

36. Formulate Joule’s law in differential form and integral forms. Capacitors 

and conductors in parallel and in series. 

37. Formulate Kirchhoff’s rules. 

38. What is a magnetic field? 

39. Formulate the Biot - Savart- Laplace’s law. Ampere's law 

40. What are magnets? What is the Curie’s point? 

41. Formulate law of electromagnetic induction. Lenz’s rule. 

42. What are the electromagnetic waves? What is the electrodynamics constant? 

43. What is electromagnetic oscillation? Thomson’s formula. 

44. Ohm's law for AC circuits. What is the impedance of the circuit? 
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Test yourself 

 

1.1. What is a SI unit of length? 

A) m (metre) 

B) s (second) 

C) mole 

D) K (kelvin) 

E) kg (kilogram) 

************ 

2.1. What is a SI unit of mass? 

A) g (gram) 

B) kg (kilogram) 

C) h (hour) 

D) mole 

E) ˚C (Celsius) 

************ 

3.1. What is a SI unit of time? 

A) h (hour) 

B) J (jear) 

C) s (second) 

D) d (day) 

E) w (week) 

************ 

4.1. What is a SI unit of electric 

current? 

A) N (Newton) 

B) cd (candela) 

C) K (Kelvin) 

D) A (ampere) 

E) C (coulomb) 

************ 

5.1. What is a SI unit of temperature? 

A) cd (candela) 

B) J (joule) 

C) ˚C (Celsius) 

D) N (Newton) 

E) K (Kelvin) 

************ 

6.1.What is a SI unit of amount of 

substance? 

A) mole 

B) beetle 

C) hour 

D) hertz 

E) candela 

************ 

7.1.What is a SI unit of luminous 

intensity? 

A) K (Kelvin) 

B) cd (candela) 

C) J (joule) 

D) C (coulomb) 

E) F (farad) 

************ 

8.1.What is a SI unit of force? 

A) J (joule) 

B) K (Kelvin) 

C) N (Newton) 

D) kg (kilogram) 

E) E (Einstein) 

************ 

9.1.What is a SI unit of electric 

charge? 

A) N (Newton) 

B) K (Kelvin) 

C) J (joule) 

D) C (coulomb) 

E) Hz (hertz) 

************ 

10.1.What is a SI unit of velocity? 

A) s 

B) m/s
2
 

C) m 

D) N 

E) m/s 

************ 

11.1.What is a SI unit of acceleration? 

A) m/s
2
 

B) m/s 

C) kg/s 

D) s/kg 

E) m·s
2 

************ 

12.1.What is a SI unit of work? 

A) K (Kelvin) 

B) m/s
2
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C) J (joule) 

D) C (coulomb) 

E) Hz (hertz) 

************ 

13.1.What is a SI unit of frequency? 

A) C (coulomb) 

B) N (Newton) 

C) m/s
2
 

D) Hz (hertz) 

E) K (Kelvin) 

************ 

14.1.The Concorde is a type of 

aeroplane that flies very fast. The top 

speed of the Concorde is 844 km/hr. 

Convert the Concorde’s top speed to 

m/s. 

A) 844 m/s 

B) 3038 m/s 

C) 0.844 m/s 

D) 300 m/s 

E) 234 m/s 

************ 

15.1.A measurement of a location, 

with reference to an origin is a … 

A) position 

B) displacement 

C) force 

D) velocity 

E) acceleration 

************ 

16.1. What is the symbol used to 

indicate position? 

A) μ 

B) x 

C) £ 

D) ∞ 

E) ¥ 

************ 

17.1. What is the position for the 

object A? 

 
A) 3 s 

B) -1. m 

C) -3 m 

D) 3 m 

E) 0 

************ 

18.1. What is the position for the 

object B?  

 
A) 2 m 

B) 1. m 

C) 0 m 

D) -1. m 

E) -2 m 

************ 

19.1. What is the position for the 

object C? 

 
A) -3 m 

B) -1. m 

C) 1. m 

D) 4 m 

E) unknown 

************ 

20.1. What is the position for the 

object D? 
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A) 1. m 

B) 3 m 

C) 0 m 

D) -1. m 

E) -3 m 

************ 

21.1. What is the position for the 

object E? 

 
A) 4 m 

B) 3 m 

C) 2 m 

D) 1. m 

E) -1. m 

************ 

22.1.What is the position for the 

reference point? 

 
A) 3 m  

B) 1. m 

C) 0 m 

D) -1m 

E) -3 m 

************ 

23.1. The change in an object’s 

position is … 

A) force 

B) momentum 

C) velocity 

D) torque 

E) Displacement 

************ 

24.1. Choose a scalar quantity: 

A) velocity 

B) mass 

C) force 

D) acceleration 

E) displacement 

************ 

25.1. Choose a scalar quantity: 

A) torque 

B) time 

C) force 

D) acceleration 

E) velocity 

************ 

26.1.Choose a scalar quantity: 

A) velocity 

B) momentum 

C) displacement 

D) position 

E) force 

************ 

27.1. Choose a scalar quantity: 

A) distance 

B) displacement 

C) acceleration 

D) torque 

E) momentum 

************ 

28.1. Choose a vector quantity: 

A) time 

B) distance 

C) mass 

D) displacement 

E) position 

************ 

29.1. Choose a vector quantity: 

A) distance 

B) mass 

C) time 

D) velocity 

E) position 

************ 

30.1. Choose a vector quantity: 
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A) position 

B) mass 

C) time 

D) distance 

E) acceleration 

************ 

31.1. Choose a vector quantity: 

A) distance 

B) force 

C) mass 

D) position 

E) time 

************ 

32.1. The first derivative of a 

displacement with respect to time is 

… 

A) force 

B) position 

C) acceleration 

D) velocity 

E) impulse 

************ 

33.1.The rate of change of position is 

… 

A) distance 

B) momentum 

C) velocity 

D) torque 

E) mass 

************ 

34.1. The first derivative of a 

displacement with respect to time is 

… 

A) velocity 

B) momentum 

C) acceleration 

D) force 

E) position 

************ 

35.1. Choose the modulus of vector 

velocity: 

А)  =ωR.   

B)  = 

dr

dt



 

C)
222





























dt

dz

dt

dy

dt

dx

  

D) dt

dS




  

E) =0  -at. 

************ 

36.1. Given kinematics equation of a 

motion of a point: x=2+4t+2t
3
. Find a 

position of a point at the moment t=2 

s: 

A) 16 m 

B) 26 m 

C) 28 m 

D) 2 m 

E) 8 m 

************ 

37.1. Given kinematics equation of a 

motion of a point: x=2+4t+2t
3
. Find a 

velocity of a point at the moment t=2 

s: 

A) 16 m/s 

B) 28 m/s 

C) 2 m/s 

D) 8 m/s 

E) 26 m/s 

************ 

38.1. Given kinematics equation of a 

motion of a point: x=2+4t+2t
3
. Find 

an acceleration of a point at the 

moment t=2 s: 

A) 16 m/s
2 

B) 24 m/s
2
 

C) 2 m/s
2
 

D) 8 m/s
2
 

E) 26 m/s
2
 

************ 

39.1. A position of a point changes 

with a law: x=2+4t+2t
3
. Find a 

position of a point at the moment t=1. 

s: 

A) 1. m 

B) 2 m 

C) 4 m 

D) 6 m 
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E) 8 m 

************ 

40.1. A position of a point changes 

with a law: x=2+4t+2t
3
. Find a 

velocity of a point at the moment t=1. 

s: 

A) 2 m 

B) 4 m 

C) 6 m 

D) 8 m 

E) 10m 

************ 

41.1. A position of a point changes 

with a law: x=2+4t+2t
3
. Find an 

acceleration of a point at the moment 

t=1. s: 

A) 2 m/s
2
 

B) 4 m/s
2
 

C) 6 m/s
2
 

D) 8 m/s
2
 

E) 12 m/s
2
 

************ 

42.1. The second derivative of a 

displacement with respect to time is 

… 

A) acceleration 

B) velocity 

C) force 

D) torque 

E) momentum 

************ 

43.1. The rate of change of velocity is 

… 

A) momentum 

B) velocity 

C) acceleration 

D) force 

E) position 

************ 

44.1. How can you define an 

acceleration? 

A) .
dt

d
a




  

B) a
d s

dt


2

2
 

C) 
dt

d
a


  

D) 
R

a
2

  

E) a=g 

************ 

45.1. How can you define an 

acceleration? 

A) 
222


































dt

dv

dt

dv

dt

dv
a zyx  

B) a
d s

dt


2

2
 

C) 
dt

d
a


  

D) 
R

a
2

  

E) a=g 

************ 

46.1. An athlete is accelerating 

uniformly from an initial velocity of 0 

m/s to a final velocity of 4 m/s in 2 

seconds. Calculate his acceleration. 

A) – 2 m/s
2
 

B) 2 m/s
2
 

C) 0 m/s
2
 

D) 0.5 m/s
2
 

E) -0.5 m/s
2
 

************ 

47.1. An aeroplane accelerates 

uniformly from an initial velocity of 

200 m/s to a final velocity of 100 m/s 

in 10 seconds. Calculate his 

acceleration. 

A) -10 m/s
2
 

B) 30 m/s
2
 

C) -30 m/s
2
 

D) 10 m/s
2
 

E) 3000 m/s
2
 

************ 

48.1. A bus accelerates uniformly 

from an initial velocity of 15 m/s to a 
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final velocity of 7 m/s in 4 seconds. 

Calculate his acceleration. 

A) 2 m/s
2
 

B) 5.5 m/s
2
 

C) -5.5 m/s
2
 

D) -2 m/s
2
 

E) 88 m/s
2
 

************ 

49.1. Choose a normal component of 

acceleration: 

A) 
n

dv
a

dt
  

B) 2

na r  

C) 
2

2n

d r
a n

dt
  

D) 
2

n

v
a

R
  

E) 
2

n

v
a n

R
  

************ 

50.1. Choose a centripetal component 

of acceleration: 

A) 
n

dv
a

dt
  

B) 2

na r  

C) 
2

2n

d r
a n

dt
  

D) 
2

n

v
a

R
  

E) 
2

n

v
a n

R
  

************ 

51.1. Choose an tangential component 

of acceleration: 

A)     
    

  
  

B)        

C)     
     

   
  

D)     
   

 
  

E)     
    

 
  

************ 

52.1. Choose a equation of motion: 

A)           
B)         

C)       
 

 
 

D)       
   

 
 

E)            
************ 

53.1. A car starts off at 10 m/s and 

accelerates at 1. m/s
2
 for 10 s. What is 

its final velocity? 

A) 100 m/s 

B) 0.9 m/s 

C) 1.1. m/s 

D) 20 m/s 

E) 11m/s 

************ 

54.1. A train starts from rest, and 

accelerates at 1. m/s
2
 for 10 s. How 

far does it move? 

A) 10 m 

B) 25 m 

C) 50 m 

D) 100 m 

E) 75m 

************ 

55.1. A bus is going 30 m/s and stops 

in 5 s. What is its stopping distance 

for this speed?  

A) 35 m 

B) 25 m 

C) 50 m 

D) 75 m 

E) 225 m 

************ 

56.1. A racing car going at 20 m/s 

stops in a distance of 20 m. What is 

its acceleration?  

A) -10 m/s
2
 

B) -1. m/s
2
 

C) -20 m/s
2
 

D) -40 m/s
2
 

E) -5 m/s
2
 

************ 
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57.1. If the car travelling at 120 km/h, 

how long will it take the a car to 

travel 100 m?  

A) 1. s 

B) 2 s 

C) 5 s 

D) 3 s 

E) 10 s 

************ 

58.1. An object will remain in a state 

of rest or continue travelling at 

constant velocity, unless acted upon 

by an unbalanced (net) force. It is …  

A) Newton’s first law 

B) Newton’s second law 

C) Newton’s third law 

D) gravity law 

E) straight line motion law 

************ 

59.1. Choose the second law of 

Newton: 

A)        

B)         
C)        

D)    
    

  
 

E)                   
************ 

60.1. Choose the second law of 

Newton: 

A)         
B)          

C)    
   

  
 

D)    
    

  
 

E)        
************ 

61.1.Choose the second law of 

Newton: 

A)                   

B)    
    

  
 

C)          

D)         

E)     
    

  
 

************ 

62.1.       . It is …  

A) Newton’s first law 

B) Newton’s second law 

C) Newton’s third law 

D) gravity law 

E) straight line motion law 

************ 

63.1.     
    

  
. It is …  

A) Newton’s first law 

B) Newton’s second law 

C) Newton’s third law 

D) gravity law 

E) straight line motion law 

************ 

64.1.    
   

  
. It is …  

A) Newton’s first law 

B) Newton’s second law 

C) Newton’s third law 

D) gravity law 

E) straight line motion law 

************ 

65.1. A car of mass 850 kg accelerates 

at 2 m/s
2
. Calculate the magnitude of 

the resultant force that is causing the 

acceleration.  

A) 850 N 

B) 1700 N 

C) 425 N 

D) 3400 N 

E) 2016 N 

************ 

66.1. Find the force needed to 

accelerate a 3 kg object at 4 m/s
2
. 

A) 1. N 

B) 7 N 

C) 12 N 

D) 0.75 N 

E) 1.25 N 

************ 
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67.1. Calculate the acceleration of an 

object of mass 1000 kg accelerated by 

a force of 100 N. 

A) 0.1. m/s
2
 

B) 1100 m/s
2
 

C) 900 m/s
2
 

D) 10 m/s
2
 

E) 100000 m/s
2
 

************ 

68.1. An object of mass 7 kg is 

accelerating at 2,5 m/s
2
. What 

resultant force acts on it? 

A) 9.5 N 

B) 4.5 N 

C) -5.5 N 

D) 17.5 N 

E) 2.8 N 

************ 

69.1. Find the mass of an object if a 

force of 40 N gives it an acceleration 

of 2 m/s
2
. 

A) 20 kg 

B) 80 kg 

C) 38 kg 

D) 42 kg 

E) 0.25 kg 

************ 

70.1. Find the acceleration of a body 

of mass 1. 000 kg that has a 150 N 

force acting on it. 

A) 1150 m/s
2
 

B) 6.67 m/s
2
 

C) 850 m/s
2
 

D) 13 m/s
2
 

E) 0.15 m/s
2
 

************ 

71.1. Find the mass of an object 

which is accelerated at 2 m/s
2
 by a 

force of 800 N. 

A) 400 kg 

B) 1600 kg 

C) 100 kg 

D) 2400 kg 

E) 800 kg 

************ 

72.1. Determine the acceleration of a 

mass of 24 kg when a force of 6 N 

acts on it. What is the acceleration if 

the force were doubled and the mass 

was halved? 

A) 24.7 m/s
2
 

B) 8 m/s
2
 

C) 18 m/s
2
 

D) 30 m/s
2
 

E) 0.25 m/s
2
 

************ 

73.1. A mass of 8 kg is accelerating at 

5 m/s
2
. Determine the resultant force 

that is causing the acceleration. 

A) 13 N 

B) 40 N 

C) 1.6 N 

D) 0.625 N 

E) 169 N 

************ 

74.1. If body A exerts a force on body 

B, then body B exerts a force of equal 

magnitude on body A, but in the 

opposite direction. 

A) Newton’s first law 

B) Newton’s second law 

C) Newton’s third law 

D) law of gravity  

E) straight line motion law 

************ 

75.1. Every point mass attracts every 

other point mass by a force directed 

along the line connecting the two. 

This force is proportional to the 

product of the masses and inversely 

proportional to the square of the 

distance between them. It is … 

A) Newton’s first law 

B) Newton’s second law 

C) Newton’s third law 

D) Law of universal gravitation 

E) Galiley’s law 

************ 
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76.1. Choose a Newton’s law 

universal gravitation: 

A)    
    

  
 

B)                   

C)     
    

  
 

D)           
E)          

************ 

77.1. What Is a weight of a body? 

A)        
B)        
C)          

D)         

E)    
    

  
 

************ 

78.1. …  is calculated from the 

product of the mass and velocity of an 

object.  

A) torque 

B) momentum 

C) force 

D) acceleration 

E) weight 

************ 

79.1. How can you calculate a 

momentum? 

A)        
B)         

C)         

D)                   
E)        
************ 

80.1. What is a SI unit of the 

momentum? 

A) kg 

B) Newton 

C) kg·m/s 

D) m/s 

E) N/kg 

************ 

81.1. A soccer ball of mass 420 g is 

kicked at 20 m/s towards the goal 

post. Calculate the momentum of the 

ball.  

A) 8,4 kg·m/s 

B) 8400 kg·m/s 

C) 21. kg·m/s 

D) 440 kg·m/s 

E) 400 kg·m/s 

************ 

82.1. A cricket ball of mass 160 g is 

bowled at 40 m/s towards a batsman. 

Calculate the momentum of the 

cricket ball. 

A) 4.6 kg·m/s 

B) 6400 kg·m/s 

C) 200 kg·m/s 

D) 6.4 kg·m/s 

E) 120 kg·m/s 

************ 

83.1. Product if the net force and the 

time interval for which the force acts 

is … 

A) torque 

B) impulse 

C) momentum 

D) gravity 

E) energy 

************ 

84.1. How can you calculate impulse? 

A)     
B)     
C)         

D)       

E)                   
************ 

85.1. A system which has no forces 

acting on it from the outside is … 

A) isolated 

B) free 

C) local 

D) infinity 

E) closed 

************ 

86.1. What is a SI unit of the impulse? 

A) kg 
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B) m/s
2
 

C) N·s 

D) kg·m/s
2
 

E) N/s 

************ 

87.1. Choose a formula for a torque: 

A)          

B)         

C)    
    

  
 

D)         

E)           
************ 

88.1. A driving force of 750 N acts on 

a car of mass 600 kg. Calculate the 

car’s acceleration. 

A) 0.75 m/s
2
 

B) 1.25 m/s
2 

C) 1. m/s
2
 

D) 1.3 m/s
2
 

E) 1.5 m/s
2
 

************ 

89.1. A driving force of 900 N acts on 

a car of mass 600 kg. Calculate the 

car’s speed after 20 s. 

A) 10 m/s 

B) 20 m/s 

C) 30 m/s 

D) 40 m/s 

E) 50 m/s 

************ 

90.1. What is a resultant of forces? 

A)         

B)           
C)        

D)        

E)                   
************ 

91.1. Two forces act for a point. 

Modulus of forces f1=3 N and f2=4 N. 

The angle between the forces equal 

90˚.What is a resultant of forces? 

A) 1. N 

B) 0 N 

C) 25 N 

D) 5 N 

E) 3 N 

************ 

92.1. Two forces act for a point. 

Modulus of forces f1=3 N and f2=4 N. 

The angle between the forces equal 

0˚.What is a resultant of forces? 

A) 7 N 

B) 25 N 

C) 1. N 

D) 5 N 

E) 16 N 

************ 

93.1. Two forces act for a point. 

Modulus of forces f1=3 N and f2=4 N. 

The angle between the forces equal 

180˚.What is a resultant of forces? 

A) 0 N 

B) 1. N 

C) 16 N 

D) 5 N 

E) 25 N 

************ 

94.1.A man has a mass of 75 kg. 

What is a weight of the man? 

A) 75 N 

B) 1500 N 

C) 7.65 N 

D) 735 N 

E) 7.5 N 

************ 

95.1. What is a magnitude of free fall 

acceleration? 

A) 8.9 

B) 3 

C) 8.31 

D) 6.02 

E) 9.8 

************ 

96.1. Motion in the Earth’s gravitation 

field when no other forces act on the 

object is … 

A) lineal 
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B) free fall 

C) constant 

D) regular 

E) infinity 

************ 

97.1. An apple falls from a tree. It 

takes 1. s to reach the ground. What is 

the velocity of the apple when it 

reaches the ground? 

A) 4.9 m/s 

B) 1. m/s 

C) 9.8 m/s 

D) 11.2 m/s 

E) 19.6 m/s 

************ 

98.1. A stone is dropped from the top 

a 5 m. How long does it takes the 

stone to reach the ground? 

A) 0.1. s 

B) 0.5 s 

C) 50 s 

D) 1.7 s 

E) 1. s 

************ 

99.1. Choose a Hook’s law: 

A)         

B)    
   

  
 

C)    
    

  
 

D)           

E)                   
************ 

100.1. Choose a friction force: 

A)         

B)        

C)           

D)    
   

  
 

E)          

************ 

101.1. Which type of mechanical 

energy do exist? 

A) kinetic and potential 

B) potential and intern 

C) intern and nuclear 

D) nuclear and kinetic 

E) electric and magnetic 

************ 

102.1. …. is the energy an object has 

due to its position state: 

A) kinetic 

B) nuclear 

C) potential 

D) magnetic 

E)  intern 

************ 

103.1.  What is a SI unit of potential 

energy? 

A) W (Watt) 

B) N (Newton) 

C) g (m/s
2
) 

D) G (without unit) 

E) J (Joule) 

************ 

104.1. Chose a formula for the 

gravitational potential energy above 

Earth: 

A) 
   

 
 

B)     

C) 
   

 
 

D)     

E)       

************ 

105.1.  A brick with a mass 2 kg is 

lifted to the top of a 4 m high roof. 

Calculate the potential energy of the 

brick at the top of the roof. 

A) 88 J 

B) 180 J 

C) 58,8 J 

D) 78,4 J 

E) 66 J 

************ 

106.1.  The energy an object has due 

to its motion is … 

A) intern 

B) nuclear 
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C) kinetic 

D)potential  

E)electric  

************ 

107.1.  Choose a formula for the 

kinetic energy: 

A) 
   

 
 

B) 
   

 
 

C)      

D)     

E)   
  

 
 

************ 

108.1.  Choose a formula for the 

kinetic energy: 

A)       

B) 
  

  
 

C)  
    

  
 

D)  
    

  
 

E) 
   

  
 

************ 

109.1. Choose a formula for the 

kinetic energy of translational motion: 

A)        

B)     

C) 
   

  
 

D) 
 

 
    

E) 
   

 
 

************ 

110.1. Choose a formula for the 

kinetic energy of translational motion: 

A)     

B)      

C) 
  

  
 

D) 
 

  
   

E) 
   

  
 

************ 

111.1. Choose a formula for the 

kinetic energy of rotational motion: 

A)     

B)       

C) 
   

 
 

D)     

E)      

************ 

112.1. Choose a formula for the 

kinetic energy of rotational motion: 

A) 
  

  
 

B)    

C) 
  

  
 

D)      

E)         

************ 

113.1. Choose a formula for the 

elastic potential energy: 

A) 
  

  
 

B)    

C) 
   

 
 

D)      

E)         

************ 

114.1. Choose a formula for the 

angular momentum: 

A)          

B)          

C)          

D)           

E)          

************ 

115.1. A bullet, having a mass of 150 

g, is shot a muzzle velocity of 960 

m/s. Calculate its kinetic energy? 

A) 144000 J 

B) 138240000 J 

C) 144 J 

D) 82944 J 

E) 69120 J 

************ 
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116.1. A car with a mass of 700 kg is 

travelling at a constant velocity 0f 100 

km/hr. Calculate the kinetic energy of 

the car. 

A)7000 J 

B) 3.5 kJ 

C) 1.08 MJ 

D) 270 kJ 

E) 540123 J 

************ 

117.1. What is a mechanical energy? 

A) magnetic 

B) potential 

C) electric 

D) intern 

E) nuclear 

************ 

118.1. What is a mechanical energy? 

A) nuclear 

B) intern 

C) electric 

D) kinetic 

E) magnetic 

************ 

119.1. Choose a mechanics energy 

conservation law: 

A)             

B) )         

C)         

D)       

E) 
  

  
       

************ 

120.1. Choose a mechanics energy 

conservation law: 

A)                 

B) )           

C)                 

D)           

E) 
   

   
 

   

   
 

************ 

121.1. Choose a mechanics energy 

conservation law: 

A) 
  

  
       

B)             

C) 
  

  
   

D)         

E)               
************ 

122.1. Choose a momentum 

conservation law: 

A)        

B)            
C)              

D)         

E)        

************ 

123.1. Choose a momentum 

conservation law: 

A) 
   

   
 

   
 

   
  

B)         

C)            
     

  

D) 
   

  
   

E)        

************ 

124.1. Choose a momentum 

conservation law: 

A) 
   

   
 

   
 

   
  

B) 
   

  
       

C)        

D) 
   

  
   

E)            
     

  

************ 

125.1. Choose an angular momentum 

conservation law: 

A)         

B)             

C)               

D)          

E)         

************ 
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126.1. Choose an angular momentum 

conservation law: 

A) 
    

    
 

    
 

    
  

B)          

C)               
      

  

D) 
    

  
   

E)         

************ 

127.1. Choose an angular momentum 

conservation law: 

A) 
    

    
 

  
 

  
  

B) 
    

  
       

C)         

D) 
    

  
   

E)               
      

  

************ 

128.1. Choose an angular momentum 

conservation law: 

A) 
    

    
 

  
 

  
  

B) 
    

  
       

C)         

D) 
    

  
   

E)                 

************ 

129.1. Mechanical energy 

conservation law: 

A) energy cannot be crated or 

destroyed 

B) energy cannot be created, but can 

be destroyed 

C) energy can be created, but cannot 

be destroyed 

D) energy can be created and can be 

destroyed 

E) energy in the universe is equal zero 

************ 

130.1. What is a work: 

A)           

B)          

C)          

D)          

E)          

************ 

131.1. If you push a box 20 m 

forward by applying a force of 15 N 

in the forward direction, what is the 

work you have done on the box? 

A) 35 J 

B) 5 J 

C) 200 J 

D) 300 J 

E) 150 J 

************ 

132.1. A ball of mass 1. kg is dropped 

from a height of 10 m. Calculate the 

work done on the ball at the point it 

hits the ground assuming that there is 

no air resistance? 

A) 35 J 

B) 5 J 

C) 10 J 

D) 9 J 

E) 100 J 

************ 

133.1. Calculate the work done on a 

box, if it is pulled 5 m along the 

ground by applying a force of F=10 N 

at an angle of 60◦ to the horizontal 

: 

A) 15 J 

B) 50 J 

C) 200 J 

D) 25 J 

E) 150 J 

************ 

134.1. Choose a harmonic motion 

equation: 
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A)      
      

B)     
      

C)     
      

D)      
     

E)      
     

************ 

135.1.  What is a solution of a 

harmonic motion equation? 

A)               
B)               
C)               
D)             
E)               
************ 

136.1. What is   in equation   
           ? 

A) case 

B) amplitude 

C) displacement 

D) angular frequency 

E) particular case 

************ 

137.1. What does it mean   in 

equation             ? 

A) amplitude 

B) case 

C) particular case 

D) displacement 

E) angular frequency 

************ 

138.1. What is    in equation 

             ? 

A) displacement 

B) particular case 

C) amplitude 

D) case 

E) angular frequency 

************139.1. What does it 

mean         in equation  
           ? 

A) displacement 

B) angular frequency 

C) case 

D) particular case 

E) amplitude 

************140.1. What is   in 

equation              ? 

A) particular case 

B) displacement 

C) angular frequency 

D) amplitude 

E) case 

************ 

141.1. Relationship between 

frequency and period: 

A)       

B) 
 

 
     

C)   
 

 
 

D)     

E)       

************ 

142.1. Relationship between 

frequency and period: 

A)   
 

 
 

B)       

C)     

D) 
 

 
 

 

 
 

E)      

************ 

143.1. Relationship between angular 

frequency and period: 

A)   
 

   
 

B)       

C)   
 

  
 

D)   
 

 
 

E)   
  

 
 

************ 

144.1. Relationship between angular 

frequency and period: 

A)   
 

  
 

B)       

C)   
  

 
 

D)   
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E)   
 

  
 

************ 

145.1. Relationship between angular 

frequency and frequency: 

A)         

B)       

C)      

D)        

E)        

************ 

146.1. Relationship between angular 

frequency and frequency: 

A)   
  

 
 

B)   
  

 
 

C)   
 

   
 

D)   
 

  
 

E)       

************ 

147.1. What SI unit of frequency? 

A) rad/s 

B) Hertz 

C) Pertz 

D) dimensionless 

E) rad/s
2
 

************ 

148.1. A point mass suspended by a 

massless, unstrechable string is called: 

A) simple pendulum 

B) physical pendulum 

C) spring pendulum 

D) autumn pendulum 

E) elasticity pendulum 

************ 

149.1. A period of the simple 

pendulum: 

A)      
 

 
 

B)      
 

   
 

C)      
 

 
 

D)      
 

 
 

E)         
************ 

150.1. What is SI unit of a period? 

A) m 

B) h 

C) s 

D) s
-1 

E) rad/s 

************ 

151.1. An angular frequency of a 

simple pendulum: 

A)    
 

 
 

B)    
 

 
 

C)    
   

 
 

D)    
 

 
 

E)      
 

 
 

************ 

152.1. What does it mean   in the 

formula     
 

 
 ? 

A) frequency 

B) free fall acceleration 

C) mass of a string 

D) gravity constant 

E) length of string 

************ 

153.1. What does it mean   in the 

formula     
 

 
 ? 

A) length of string 

B) free fall acceleration 

C) elasticity coefficient 

D) mass of a body 

E) gravity constant 

************ 
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154.1. Find the period of a simple 

pendulum 1. m long at a location 

where g=9.8 

A) 20 s 

B) 3.13 s 

C) 2 s 

D) 0.6 s 

E) 0.32 s 

************ 

155.1. Find the frequency of a simple 

pendulum 1. m long at a location 

where g=9.8 

A) 3.13 Hz 

B) 2 Hz 

C) 1.5 Hz 

D) 0.5 Hz 

E) 4.93 Hz 

************ 

156.1. Find the angular frequency of a 

simple pendulum 1. m long at a 

location where g=9.8 

A) 2 rad/s 

B) 3.13 rad/s 

C) 0.5 rad/s 

D) 0.6 rad/s 

E) 20 rad/s 

************ 

157.1. The period of a spring 

pendulum: 

A)      
 

 
 

B)      
 

 
 

C)      
   

 
 

D)      
  

 
 

E)      
  

  
 

************ 

158.1. The angular frequency of a 

physical pendulum: 

A)      
  

  
 

B)    
 

 
 

C)     
 

 
 

D)    
   

 
 

E)    
  

 
 

************ 

159.1. The period of a physical 

pendulum: 

A)      
 

 
 

B)      
  

 
 

C)      
 

 
 

D)      
 

   
 

E)      
  

   
 

************ 

160.1. The angular frequency of a 

spring pendulum: 

A)    
 

   
 

B)    
 

 
 

C)   
 

 
 

D)    
 

 
 

E)       

************ 

161.1. What does it mean   in the 

formula     
 

 
 ? 

A) mass of a body 

B) elasticity coefficient 

C) spring constant 

D) mass of the spring 

E) mass of the cat 

************ 
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162.1. What does it mean k in the 

formula     
 

 
 ? 

A) gravity constant 

B) spring constant 

C) mass of the spring 

D) free fall acceleration 

E) viscosity 

************ 

163.1. What does it mean J in the 

formula   
   

 
 ? 

A) extension 

B) Hooke’s constant 

C) free fall acceleration 

D) mass of the spring 

E) moment of inertia 

************ 

164.1. Find a period of a spring 

pendulum of a mass 2 kg and spring 

constant of 32 N/m: 

A) 1.5 s 

B) 1.8 s 

C) 1.57 s 

D) 4.02 s 

E) 3.6 s 

************ 

165.1. Find a frequency of a spring 

pendulum of a mass 8 kg and spring 

constant of 50 N/m: 

A) 0.8 Hz 

B) 2.5 Hz 

C) 1. Hz 

D) 0.4 Hz 

E) 7.6 Hz 

************ 

166.1. A 2 kg metal ball is suspended 

from a rope. If it is released from 

point A and swings down to the point 

B (the bottom of its arc): 

. Calculate the 

velocity of the ball at point B 

A) 1. m/s 

B) 1.5 m/s 

C) 2 m/s 

D) 3.13 m/s 

E) 9.86 m/s 

************ 

167.1. A pendulum bob of mass 1.5 

kg, swings from a height A to the 

bottom of its arc at B. The velocity of 

the bob at B is 4 m/s. Calculate the 

height A from which the bob was 

released. Ignore the effects of air 

friction. 

A) 0.1. m 

B) 1. m 

C) 0.3 m 

D) 0.6 m 

E) 0.8 m 

************ 

168.1. Find a angular frequency of a 

spring pendulum of a mass 20 kg and 

spring constant of 500 N/m: 

A) 1. rad/s 

B) 8 rad/s 

C) 5 rad/s 

D) 0.2 rad/s 

E) 100 rad/s 

************ 

169.1. Choose a Bernoulli’ equation: 

A)     
   

 
         

B)        

C)         

D)   
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E)    
   

 
 

************ 

170.1. Choose a Bernoulli’ equation: 

A)        

B)      
   

 

 
         

   
 

 
 

   

C)         

D)   
          

   
 

E)    
   

 
 

************ 

171.1. Choose a Bernoulli’ equation 

for horizontal tube: 

A)        

B) 
   

 

 
    

   
 

 
    

C)         

D)   
          

   
 

E)    
   

 
 

************ 

172.1. Choose a Torricelli’s equation: 

A)     
   

 
         

B)        

C)         

D)   
          

   
 

E)    
   

 
 

************ 

173.1. Choose a Reynolds number: 

A)     
   

 
         

B)        

C)         

D)   
          

   
 

E)    
   

 
 

************ 

174.1. Choose a Bernoulli’s law for 

the horizontal pipe: 

A) 
   

 
         

B)        

C)         

D)   
          

   
 

E)    
   

 
 

************ 

175.1. Choose a Bernoulli’s law for 

the horizontal pipe: 

A)     
   

 
         

B)        

C)         

D)   
          

   
 

E) 
   

 

 
    

   
 

 
    

************ 

176.1. Choose a Stokes’s law: 

A)     
   

 
         

B)        

C)         

D)   
          

   
 

E)    
   

 
 

************ 

177.1. Choose a Poiseuille’s law: 

A)     
   

 
         

B)        

C)         

D)   
          

   
 

E)    
   

 
 

************ 

178.1. Choose a continuity equation: 

A)          

B)        

C)         

D)   
          

   
 

E)    
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************ 

179.1. Choose a continuity equation: 

A)   
          

   
 

B)        

C)         

D)           

E)    
   

 
 

************ 

180.1. What is   in the Stokes’s law? 

A) volume of fluid 

B) viscosity of the liquid 

C) density of the fluid 

D) radius of the sphere 

E) velocity of the sphere 

************ 

181.1. What does Avogadro’s number 

equal? 

A)                 
B)                  
C)                  
D)                 
E)                 
************ 

182.1. What does Boltzmann’s 

constant equal? 

A)              

B)               

C)               

D)              

E)               

************ 

183.1. What does ideal-gas constant 

equal? 

A)                
B)                
C)                
D)                
E)                
************ 

184.1. What is an amount of 

substance? 

A)   
  

 
 

B)   
 

   
 

C)   
 

  
 

D)   
   

 
 

E)    
 

 
 

************ 

185.1. What is a relationship between 

constants k, R, NA: 

A)        

B)       

C)       

D)   
 

  
 

E)        

************ 

186.1. What is relationship between a 

molar mass and molecular mass? 

A)        
         

B)   
  

    
        

C)   
  

   
       

D)        
          

E)        
         

************ 

187.1. How can you calculate a 

number of gas molecules? 

A)        

B)       

C)   
 

 
    

D)   
 

  
 

E)       

************ 

188.1. How can you calculate a 

number of gas molecules? 

A)        

B)   
 

 
   

C)   
 

 
    

D)   
 

  
 

E)       

************ 

189.1. Calculate a molar mass of 

water H2O: 
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A)            

B)              
C)              
D)              
E)               
************ 

190.1. Calculate a molar mass of 

water NH3: 

A)            

B)              
C)              
D)              
E)               
************ 

191.1. A balloon contains 2 g of a 

nitrogen. Calculate the amount of 

substance. 

A)        
B)          
C)          
D)           
E)          
************ 

192.1. A tank consists 176 g of carbon 

dioxide. Find a number of molecules. 

A)         

B)         

C)         

D)          

E)         

************ 

193.1. What is a standard temperature 

and pressure? 

A) 0 K, 100 Pa 

B) 0˚ C, 100 Pa 

C) -273˚ C, 100 kPa 

D) 273 K, 100 kPa 

E) 0˚ C, 100 MPa 

************ 

194.1. What is a major equation of 

molecular-kinetic theory? 

A) 
  

 
       

B)    
   

              

C)           

D)   
 

 
      

  

E)     
 

 
   

************ 

195.1. What is a major equation of 

molecular-kinetic theory? 

A)   
 

 
       

B)   
 

 
        

C)   
 

 
      

  

D)   
 

 
       

E)    
 

 
      

  

************ 

196.1. Choose a formula of ideal gas 

law (Mendeleev-Clapeyron’s 

equation): 

A)       

B)        

C)        

D)        

E)           

************ 

197.1. Choose an ideal gas equation: 

A)           

B)     
 

 
   

C)        

D)    
   

 
 

E)     
  

 
 

************ 

198.1. Choose a Mendeleev-

Clapeyron’s equation: 

A)       

B)    
 

 
   

C)        

D)        

E)           

************ 

199.1. Choose a Clapeyron’s 

equation: 
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A)        

B)   
 

 
    

C)      
        

D)           

E)  
  

 
       

************ 

200.1. Choose a Clapeyron’s 

equation: 

A)        

B)   
 

 
    

C)      
        

D)           

E)  
    

  
 

    

  
 

************ 

201.1. What equation is called 

Dalton’s law? 

A)     
 

 
   

B)           

C)    
   

 
 

D)              
E)        

************ 

202.1. What is a concentration of 

molecules? 

A)       

B)       

C)        

D)        

E)        

************ 

203.1. What does equal average 

translational kinetic energy of an ideal 

gas molecule? 

A)     
 

 
   

B)     
 

 
   

C)     
 

 
   

D)     
 

 
   

E)      
 

 
   

************ 

204.1. What does equal average 

kinetic energy of an ideal gas ideal 

gas molecule? 

A)     
  

 
  

B)     
 

  
  

C)     
 

 
   

D)     
 

 
   

E)     
 

  
  

************ 

205.1. What is relationship between a 

pressure, a temperature and a 

concentration? 

A)        

B)       

C)       

D)       

E)        

************ 

206.1. How can you determine the 

root-mean-square speed of a gas 

molecule? 

A)      
   

 
 

B)      
   

 
 

C)      
  

  
 

D)      
  

  
 

E)      
 

   
 

************ 

207.1. Barometric formula: 

A)      
        

B)     
  

 
 

C)     
 

  
  

D)       
  

 
 

E)           
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************ 

208.1. Boltzmann’s distribution for 

gas molecules: 

A)    
   

 
 

B) 
    

  
 

    

  
 

C)    
   

              

D)      
        

E)           

************ 

209.1. Boltzmann’s distribution for 

gas molecules: 

A)    
   

 
 

B) 
    

  
 

    

  
 

C)    
   

              

D)      
       

E)           

************ 

210.1. Boyle’s law: 

A) 
  

 
       

B)          

C) 
 

 
       

D) 
 

 
       

E)            
************ 

211.1. Gay-Lussac’s law: 

A) 
  

 
       

B)          

C) 
 

 
       

D) 
 

 
       

E)            
************ 

212.1. Charles’s law: 

A) 
  

 
       

B)          

C) 
 

 
       

D) 
 

 
       

E)            
************ 

213.1. Find the Boyle’s law: 

A) 
    

  
 

    

  
 

B)           

C) 
  

  
 

  

  
 

D) 
  

  
 

  

  
 

E)            

************ 

214.1. Find the Gay-Lussac’s law: 

A) 
    

  
 

    

  
 

B)           

C) 
  

  
 

  

  
 

D) 
  

  
 

  

  
 

E)            

************ 

215.1. Find the Charle’s law: 

A) 
    

  
 

    

  
 

B)           

C) 
  

  
 

  

  
 

D) 
  

  
 

  

  
 

E)            

************ 

216.1. If the temperature of a gas is a 

constant that process is called: 

A) adiabatic 

B) isothermal 

C) isochoric 

D) isobaric 

E) isokinetic 

************ 

217.1. If the pressure of a gas is a 

constant that process is called: 

A) adiabatic 

B) isothermal 

C) isochoric 

D) isobaric 

E) isokinetic 
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************ 

218.1. If the volume of a gas is a 

constant that process is called: 

A) adiabatic 

B) isothermal 

C) isochoric 

D) isobaric 

E) isokinetic 

************ 

219.1. A process is called isothermal 

if: 

A) p=const 

B) T=const 

C) M=const 

D) m=const 

E)  V=const 

************ 

220.1. A process is called isochoric if: 

A) p=const 

B) T=const 

C) M=const 

D) m=const 

E)  V=const 

************ 

221.1. A process is called isobaric if: 

A) p=const 

B) T=const 

C) M=const 

D) m=const 

E)  V=const 

************ 

222.1. A tank contains 1320 g of 

carbon dioxide. How many moles of 

carbon dioxide are in a tank? 

A) 10 mol 

B) 41. mol 

C) 30 mol 

D) 13 mol 

E)  47 mol 

************ 

223.1. A cylindrical tank has 512 mg 

of an oxygen. How many molecules 

are in a cylinder? 

A)          

B)           

C)          

D)          

E)          

************ 

224.1. A 20-L tank consists 3200 g of 

oxygen at 16˚C. What is the pressure 

in the tank? 

A) 12 MPa 

B) 12 kPa 

C) 0,66 MPa 

D) 664 MPa 

E)  2000 Pa 

************ 

225.1. Four moles of an ideal gas are 

in a rigid cubical box with sides of 

length 0.2 m. What is a temperature of 

the gas if the pressure 20 atm? 

A) 240˚C 

B) 200˚C 

C) 208˚C 

D) 481˚C 

E) 108˚C 

************ 

226.1. A balloon has 300 g of 

hydrogen at 36˚C and under pressure 

of 5 atm. What is a volume of the 

balloon? 

A) 0,11. m
3
 

B) 0,33 m
3
 

C) 0,55m
3
 

D) 0,66 m
3
 

E)  0,77 m
3
 

************
 

227.1. Calculate the density of the 

atmosphere of Jupiter where the 

pressure is 1. atm and the temperature 

is -107 ˚C with a hydrogen 

atmosphere? 

A) 0.14 kg/m
3
 

B) 1.2 kg/m
3
 

C) 0.4 kg/m
3
 

D) 10 kg/m
3
 

E) 0.045 kg/m
3
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************ 

228.1. A canister of volume 50-L has 

      molecules. Find a 

concentration of molecules. 

A)             

B)           

C)           

D)           

E)  1.5         

************ 

229.1. Calculate the gas temperature 

in a balloon if the pressure is 1.5 MPa 

and the concentration of molecules is 

       ? 

A) 177 ˚C 

B) 45 ˚C 

C) 454 ˚C 

D) 89 ˚C 

E) 276 ˚C 

************ 

230.1. What is the pressure in 

cylinder if it has the temperature 

162˚C and concentration of a 

molecules       ? 

A) 5977 Pa 

B) 6700 kPa 

C) 1. MPa 

D) 6 MPa 

E)  1800 kPa 

************ 

231.1. Two moles of an ideal gas have 

a temperature of 57˚C and a volume 

of 75 litters. What is a pressure of a 

gas? 

A) 37000 Pa 

B) 8850 kPa 

C) 73 kPa 

D) 20625 Pa 

E) 0.02 kPa 

************ 

232.1. A 10-L balloon has 16 g of 

helium under the pressure 1,5 MPa. 

What is a temperature of a helium in 

this balloon? 

A) 32˚C 

B) 208˚C 

C) 504˚C 

D) 481˚C 

E)  43˚C 

************ 

233.1. What is a volume of a tank if 5 

g of oxygen under normal pressure 

has a temperature of 35˚C? 

A) 7 litters 

B) 175 litters 

C) 0.14 litters 

D) 4 litter 

E) 15 L 

************ 

234.1. A 6-liter container has 10 g of 

a gas under pressure of 2 atm and a 

temperature of 131. ˚C. What kind of 

gas is in a container? 

A) O2 

B) He 

C) N2 

D) H2 

E)  Ar 

************ 

235.1. How many moles of an ideal 

gas does consist a 45-L cylinder if the 

temperature is normal and the 

pressure is 0.5 atm? 

A) 0.134 mol 

B) 90 mol 

C) 3mol 

D) 2 mol 

E) 1. mol 

************ 

236.1. Calculate an average kinetic 

energy of an oxygen molecule if a 

temperature is normal: 

A)            
B)            
C)             
D)           
E)              
************ 
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237.1. Calculate an average kinetic 

energy of an argon (monatomic gas) 

molecule if a temperature is 65˚C: 

A)             
B)            
C)           
D)             
E)               
************ 

238.1. A balloon with ammonia (NH3) 

has a temperature 500˚C. What is an 

average kinetic energy of NH3-

molecule? 

A)             
B)             
C)            
D)             
E)           
************ 

239.1. What is root-mean-square 

speed     of hydrogen with a 

temperature 30 ˚C? 

A) 1129 m/s 

B) 687 m/s 

C) 510 m/s 

D) 328 m/s 

E)  873 m/s 

************ 

240.1. The root-mean-square speed of 

gas molecules is 540 m/s under 

temperature of 54,5˚C. What is gas 

this? 

A) carbon dioxide 

B) helium 

C) nitrogen 

D) oxygen 

E) hydrogen 

************ 

241.1. What is a temperature of 

carbon dioxide if root-mean-square 

speed of molecules is 124 m/s? 

A) 300°C 

B) 30°C 

C) 122°C 

D) 27°C 

E)  54,5°C 

************ 

242.1. Equation of state for the real 

gas is: 

A)    
   

              

B)                    

C)     
  

 
 

   

  
 

D) 
 

 
         

  

  
   

   

    

E)   
   

 
            

************ 

243.1. Choose the Van der Waals’ 

equation: 

A)                
   

  
 

B)     
   

             

C)    
   

              

D)          
   

        

E)    
   

              

************ 

244.1. Choose the Van der Waals’ 

equation for the one mole of real gas: 

A)    
 

  
           

B)             
 

  
  

C)                

D)    
 

  
            

E)    
 

  
            

************ 

245.1. How does determine the intern 

energy of a real gas? 

A)    
  

 
         

B)          
  

 
  

C)   
  

 
        

D)         
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E)          
  

 
  

************ 

246.1. What is an intern pressure of a 

real gas? 

A)  
  

 
 

   

  
 

B)   
 

  
  

C)  
   

 
   

D)      

E)          

************ 

247.1. What is a SI unit of a Van der 

Waals’ a-constant ? 

A)        

B) 
     

  
 

C)         

D) 
     

  
 

E) 
    

    
 

************ 

248.1. What is a SI unit of a Van der 

Waals’ b-constant ? 

A) 
     

  
 

B)        

C)       

D) 
    

    
 

E)         

************ 

249.1. Formula for the work of a gas: 

A)       
  

  
 

B)     
 

  
  

C)    
   

 
          

D)          

E)     
  

 
 

************ 

250.1. What is the work of a gas in 

isobaric process? 

A)     

B)     

C)            

D)        
  

  
 

E)      

************ 

251.1. What is the work of a gas in 

isochoric process? 

A)     
 

  
  

B)     

C)            

D)        
  

  
 

E)     

************ 

252.1. What is the work of a gas in 

isothermal process? 

A)     

B)     

C)            

D)        
  

  
 

E)       
  

 
 

************ 

253.1. What is the work of a gas if the 

temperature is a constant? 

A)     

B)        
  

  
 

C)            
D)     

E)       
  

 
 

************ 

254.1. What is the work of a gas if the 

pressure is a constant? 

A)            
B)     

C)      

D)        
  

  
 

E)      

************ 

255.1. What is the work of a gas if the 

volume is a constant? 

A)     
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B)      

C)            

D)        
  

  
 

E)     

************ 

256.1. One of the important concepts 

in thermodynamics: 

A) kinetic energy 

B) magnetic energy 

C) internal energy 

D) nuclear energy 

E) electric energy 

************ 

257.1. The sum of kinetic energies of 

all particles of a system, plus the sum 

of all the potential energies of 

interaction among these particles is: 

A) work 

B) heat 

C) entropy 

D) heat capacity 

E) internal energy 

************ 

258.1. The molar heat capacity at 

constant volume for monatomic gas: 

A)    
 

 
  

B)    
 

 
  

C)    
 

 
  

D)    
 

 
  

E)     
   

 
  

************ 

259.1. The molar heat capacity at 

constant volume for diatomic gas: 

A)    
 

 
  

B)    
 

 
  

C)    
 

 
  

D)     
 

 
  

E)     
   

 
  

************ 

260.1. The molar heat capacity at 

constant volume: 

A)    
 

 
  

B)    
 

 
  

C)    
 

 
  

D)    
 

 
  

E)     
   

 
  

************ 

261.1. The molar heat capacity at 

constant pressure for monatomic gas: 

A)    
 

 
  

B)    
 

 
  

C)    
 

 
  

D)    
 

 
  

E)     
 

 
  

************ 

262.1. The molar heat capacity at 

constant pressure for diatomic gas: 

A)    
 

 
  

B)    
 

 
  

C)    
 

 
  

D)    
 

 
  

E)     
 

 
  

************ 

263.1. The molar heat capacity at 

constant pressure: 

A)    
 

 
  

B)    
 

 
  

C)    
 

 
  

D)    
 

 
  

E)     
   

 
  

************ 

264.1. Robert Mayer’s equation: 

A)         

B)         
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C)         

D)           

E)          

************ 

265.1. Adiabatic index: 

A)   
   

   
 

B)   
   

 
 

C)   
   

   
 

D)   
   

 
 

E)    
   

 
 

************ 

266.1. Find formula for the adiabatic 

index: 

A)   
  

  
  

B)   
  

  
 

C)   
  

  
 

D)   
  

   
 

E)    
 

    
 

************ 

267.1. Heat capacity: 

A)   
  

  
 

B)   
  

   
 

C)   
 

 
 

D)   
  

   
 

E)   
  

  
 

************ 

268.1. Specific heat capacity: 

A)   
   

  
 

B)   
  

  
 

C)   
  

   
 

D)   
  

   
 

E)   
  

  
 

************ 

269.1. Molar heat capacity: 

A)    
  

  
 

B)    
  

   
 

C)    
   

  
 

D)    
  

   
 

E)    
   

  
 

************ 

270.1. The first law of 

thermodynamics: 

A)           

B)     
  

 
   

C)        

D)      
        

E)  
    

  
 

    

  
 

************ 

271.1. The first law of 

thermodynamics: 

A)      
        

B)     
  

 
   

C)        

D)              

E)  
    

  
 

    

  
   

************ 

272.1. The first law of 

thermodynamics for isothermal 

process: 

A)           
B)        
C)       

D)         

E)            
************ 

273.1. The first law of 

thermodynamics for isobaric process: 

A)           
B)        
C)       

D)         

E)            
************ 
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274.1. The first law of 

thermodynamics for isochoric 

process: 

A)           
B)        
C)       

D)         

E)            
************ 

275.1. The first law of 

thermodynamics for adiabatic 

process: 

A)           
B)        
C)       

D)         

E)            
************ 

276.1. Choose the formula for the 

internal energy of ideal gas: 

A)   
 

 
    

B)       

C)    
  

 
 

D)   
  

 
 

E)     
   

 
 

************ 

277.1. Choose the formula for the 

internal energy of ideal gas: 

A)   
 

  
  

B)     
   

  
 

C)     
 

 
   

D)        

E)           

************ 

278.1. Choose the formula for the 

internal energy of ideal gas: 

A)   
 

  
  

B)     
   

  
 

C)        

D)        

E)           

************ 

279.1. Choose the formula for the 

internal energy of ideal gas: 

A)   
  

  
 

B)        

C)       

D)   
  

 
 

E)    
 

 

 

 
   

************ 

280.1. Choose the formula for the 

internal energy of ideal gas: 

A)        

B)            

C)   
  

 
  

D)   
 

 
    

E)    
   

 
 

************ 

281.1. Choose the formula for the 

internal energy of ideal gas: 

A)   
 

 
    

B)   
 

 
    

C)   
 

 
   

D)   
 

 
    

E)           

************ 

282.1. In the isobaric process volume 

of the gas changes from 30 to 10 L. 

How much work does the gas do if 

the pressure is 1.2 atm? 

A) 12kJ 

B) 0.036 MJ 

C) 24 kJ 

D) 48 kJ 

E)  40000 J 

************ 

283.1. What is a change of a volume 

if the gas do a work 50 kJ under 

pressure 2.9 atm? 
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A) 0.27 m
3
 

B) 0.17 m
3
 

C) 10 m
3
 

D) 71. m
3
 

E)  145 m
3
 

************ 

284.1. In the isobaric process volume 

of the gas changes from 50 to 100 L. 

How much is the pressure if a work is    

75 kJ? 

A) 1500 Pa 

B) 500 kPa 

C) 11250 Pa 

D) 1.5 MPa 

E) 225000 Pa 

************ 

285.1. A tank consists 320 g of 

oxygen at 16˚C. What is the internal 

energy of the gas? 

A) 5120 J 

B) 4335 J 

C) 24 kJ 

D) 60 kJ 

E) 0.2 kJ 

************ 

286.1.  A 50-L balloon has ideal gas 

under pressure of 5 atm. What is an 

internal energy of a gas? 

A) 25 kJ 

B) 250 J 

C) 0.25 J 

D) 25 MJ 

E)  1. kJ 

************ 

287.1. A container of volume 258-L 

consist        molecules of diatomic 

gas with concentration           

under the temperature 300 K. Find an 

internal energy of a gas. 

A) 2700 J 

B) 48 kJ 

C) 20 J 

D) 567 kJ 

E)  80 kJ 

************ 

288.1. A container of volume 258-L 

consist        molecules of 

monatomic gas with concentration 

          under the temperature 

300 K. Find an internal energy of a 

gas? 

A) 2700 J 

B) 12600 J 

C) 48000 J 

D) 0.2 MJ 

E) 0.08 MJ 

************ 

289.1. Calculate the molar heat 

capacity at constant volume for 

helium: 

A) 20.78 J/(mol*K) 

B) 12,5 J/(mol*K) 

C) 20.8 J/(mol*K) 

D) 29.085 J/(mol*K) 

E)  24.9 J/(mol*K) 

************ 

290.1. Calculate the molar heat 

capacity at constant volume for 

nitrogen: 

A) 29.085 J/(mol*K) 

B) 33.24  J/(mol*K) 

C) 20,8 J/(mol*K) 

D) 24,9 J/(mol*K) 

E)  12,5 J/(mol*K) 

************ 

291.1. Calculate the molar heat 

capacity at constant pressure for 

nitrogen: 

A) 12.5 J/(mol*K) 

B) 32.15 J/(mol*K) 

C) 33.24 J/(mol*K) 

D) 24.9 J/(mol*K) 

E)  29.085 J/(mol*K) 

************ 

292.1. Calculate the molar heat 

capacity at constant pressure for argon 

(monatomic gas): 

A) 33.24 J/(mol*K) 
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B) 12,5 J/(mol*K) 

C) 20.8 J/(mol*K) 

D) 29.085 J/(mol*K) 

E)  24.9 J/(mol*K) 

************ 

293.1. Calculate the molar heat 

capacity at constant pressure for 

oxygen: 

A) 29.085 J/(mol*K) 

B) 20.78 J/(mol*K) 

C) 33.24 J/(mol*K) 

D) 24,9 J/(mol*K) 

E)  12,5 J/(mol*K) 

************ 

294.1. Calculate the molar heat 

capacity at constant pressure for NH3: 

A) 12.5 J/(mol*K) 

B) 33.24 J/(mol*K) 

C) 20,8 J/(mol*K) 

D) 24.9 J/(mol*K) 

E)  29.085 J/(mol*K) 

************ 

295.1. Calculate adiabatic index for 

the neon (monatomic gas): 

A) 1.67 

B) 0.33 

C) 1.4 

D) 0.6 

E) 1.33 

************ 

296.1. Calculate adiabatic index for 

the hydrogen: 

A) 1.67 

B) 0.33 

C) 1.4 

D) 0.6 

E) 1.33 

************ 

297.1. Calculate adiabatic index for 

the SO2: 

A) 1.67 

B) 0.33 

C) 1.4 

D) 0.6 

E) 1.33 

************ 

298.1. A container consists        

molecules of monatomic gas under 

temperature of 300 K. What is an 

internal energy of the gas? 

A) 373 kJ 

B) 187 kJ 

C) 512 kJ 

D) 311. kJ 

E)  700 KJ 

************ 

299.1. A container consists        

molecules of oxygen under 

temperature of 300 K. What is an 

internal energy of the gas? 

A) 373 kJ 

B) 187 kJ 

C) 512 kJ 

D) 311. kJ 

E)  700 KJ 

************ 

300.1. A container consists        

molecules of carbon dioxide under 

temperature of 300 K. What is an 

internal energy of the gas? 

A) 373 kJ 

B) 187 kJ 

C) 1024 kJ 

D) 311. kJ 

E)  900 kJ 

************ 

301.1. A container consists 3 moles of 

helium under temperature of 30˚C. 

What is an internal energy of the gas? 

A) 11330 J 

B) 48314 J 

C) 6278 J 

D) 21900 J  

E)  18765 J 

************ 

302.1. A container consists 4 moles of 

oxygen under temperature of 40˚C. 

What is an internal energy of the gas? 
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A) 15606 J 

B) 7450 J 

C) 26010 J 

D) 31212 J 

E) 3988 J 

************ 

303.1. A container consists 6 moles of 

SO3 under temperature of 50˚C. What 

is an internal energy of the gas? 

A) 5790 J 

B) 11330 J 

C) 16280 J 

D) 26010 J 

E)  48314 J 

************ 

304.1. A tank has 5 g of helium 

(monatomic gas) under temperature of 

60˚C. What is an internal energy of 

the gas? 

A) 3.5 kJ 

B) 5 kJ 

C) 1.2 kJ 

D) 2.8 kJ 

E)  7.8 kJ 

************ 

305.1. A tank has 7,5 g of nitrogen 

under temperature of 70˚C. What is an 

internal energy of the gas? 

A) 1861J 

B) 1945 J 

C) 1272 J 

D) 1908 J 

E) 2016 J 

************ 

306.1. A tank has 10 g of NO2 under 

temperature of 80˚C. What is an 

internal energy of the gas? 

A) 4.6 kJ 

B) 1,9 kJ 

C) 2.1. kJ 

D) 3.3 kJ 

E)  1.2 kJ 

************ 

307.1. What is an entropy? 

A)       
  

  
 

B)    
   

 
 

C)    
  

 
 

D)          

E)        
  

  
 

************ 

308.1.  What is the entropy change? 

A)        
  

 
 

B)    
   

 
   

C)    
  

 
 

D)           

E)          
  

  
 

************ 

309.1. Choose the Boltzmann’ 

formula for entropy: 

A)        

B)           

C)        
  

  
 

D)      
   

  
 

E)    
 

 
   

************ 

310.1. The thermal efficiency of a 

heat engine: 

A)     
  

  
 

B)   
 

  
 

C)   
  

 
 

D)   
     

  
 

E)   
  

  
   

************ 

311.1. The thermal efficiency of a 

heat engine: 

A)   
     

  
 

B)   
  

  
   

C)   
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D)   
     

  
 

E)      
  

  
 

************ 

312.1. The thermal efficiency of a 

heat engine: 

A)   
  

  
   

B)   
  

 
 

C)     
  

  
 

D)   
     

  
 

E)     
  

  
 

************ 

313.1. The thermal efficiency of a 

heat engine: 

A)     
  

  
 

B)   
 

  
 

C)   
  

 
 

D)   
    

  
 

E)   
  

  
   

************ 

314.1. The thermal efficiency of a 

heat engine: 

A)   
     

  
 

B)   
  

  
   

C)   
  

 
 

D)   
     

  
 

E)      
  

  
 

************ 

315.1. The thermal efficiency of a 

heat engine: 

A)   
  

  
   

B)   
  

 
 

C)     
  

  
 

D)   
     

  
 

E)     
  

  
 

************ 

316.1. The thermal efficiency of the 

Carnot cycle: 

A)   
     

  
 

B)   
  

  
   

C)   
  

 
 

D)   
     

  
 

E)      
  

  
 

************ 

317.1. The thermal efficiency of the 

Carnot cycle: 

A)   
  

  
   

B)   
  

 
 

C)     
  

  
 

D)   
     

  
 

E)     
  

  
 

************ 

318.1. A diesel engine performs 2200 

J of mechanical work and discards 

4300  of heat each cycle. What is the 

thermal efficiency of the engine? 

A) 26% 

B) 34% 

C) 51% 

D) 66% 

E)  88% 

************ 

319.1. An aircraft engine takes in 

9000 J of heat and discards 6400 J 

each cycle. What is the thermal 

efficiency of the engine? 

A) 71% 

B) 171% 

C) 58% 

D) 41% 

E) 29% 
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************ 

320.1. A Carnot cycle is operated 

between heat reservoirs at 

temperatures of 520 K an 300 K. 

What is the thermal efficiency of the 

engine? 

A) 37% 

B) 29% 

C) 63% 

D) 42% 

E)  58% 

************ 

321.1. How many types of electric 

charges do exist? 

A) 1 

B) 2 

C) 3 

D) 4 

E) 5 

************ 

322.1. What is an elementary charge? 

A) 0 

B) 1.6·10
-19

 C 

C) 8.85·10
-12

 C 

D) 6.02·10
-23

 C 

E) 1.38·10
-16

 C 

************ 

323.1. What is an elementary charge? 

A) -1.6·10
-19

 C 

B) 0 

C) -8.85·10
-12

 C 

D) -6.02·10
-23

 C 

E) -1.38·10
-16

 C 

************ 

324.1. What is a charge of electron? 

A) 0 

B) +1.6·10
-19

 C 

C) -1.6·10
-19

 C 

D) 6.02·10
-23

 C 

E) -1.38·10
-16

 C 

************ 

325.1. What is a charge of proton? 

A) 0 

B) -1.38·10
-16

 C 

C) -1.6·10
-19

 C 

D) 6.02·10
-23

 C 

E) +1.6·10
-19

 C 

************ 

326.1. Choose an electric constant: 

A) 1.38·10
-16

 F/m 

B) 1.6·10
-19

 F/m 

C) 6.02·10
-23

 F/m 

D)8.85·10
-12

 F/m 

E) 1.38·10
-16

 F/m 

************ 

327.1Choose a major law of 

electrostatic: 

A)   
    

     
 
 

B)   
 

     
 
 

C)         
 

  
 

D)   
    

     
 
 

  
 

 

  
  

E)   
    

     
 

************ 

328.1. The magnitude of the electric 

force between two point charges is 

directly proportional to the product of 

the charge and inversely proportional 

to the square of the distance between 

them. It is: 

A) Ohm’s law 

B) Gauss’s law 

C) Coulomb’s law 

D) Kirchhoff’s junction rule 

E) Kirchhoff’s junction loop rule 

************ 

329.1. Choose a Coulomb’s law: 

A)            

B)         
 

  
 

C)   
 

   
 

D)   
    

     
 
 

E)   
    

     
 
 

  
 

 

  
  

************ 
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330.1. What is characteristic of 

electric fields? 

A)   
 

  
 

B)        

C)           

D)   
 

     
 

E)     
  

 
 

************ 

331.1. The electric force using on a 

charged body: 

A)           

B)         

C)    
 

  
 

D)             

E)    
 

     
 

332.2 The electric dipole moment: 

A)        

B)         

C)     
  

 
 

D)           

E)        

************ 

333.3 The magnitude of electric 

dipole moment: 

A)            

B)   
 

   
 

C)         
D)      

E)   
 

 
 

************ 

334.1. What is electric field of a point 

charge: 

A)   
    

     
 

B)   
    

     
 
 

  
 

 

  
  

C)   
 

     
 
 

D)   
    

     
 
 

E)         
 

  
 

************ 

335.1. What is linear charge density? 

A)   
  

  
 

B)   
  

  
 

C)   
  

  
 

D)   
  

  
 

E)   
  

  
 

************ 

336.1. What is surface charge 

density? 

A)   
  

  
 

B)   
  

  
 

C)   
  

  
 

D)   
  

  
 

E)   
  

  
 

************ 

337.1. What is volume charge 

density? 

A)   
  

  
 

B)   
  

  
 

C)   
  

  
 

D)   
  

  
 

E)   
  

  
 

************ 

338.1. Superposition of electric field: 

A)  
 

    
  

 

  
 

B)  
 

    
              

C)                

D)           

E) 
 

   
  

 

    
 

************ 

339.1. Superposition of electric field: 

A)                 
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B)                           
C)                

D) 
 

 
 

 

  
 

 

  
 

 

  
   

 

  
 

E)                 

************ 

340.1. Electric flux of a nonuniform 

field: 

A)            

B)    
 

  
 

C)             

D)    
 

   
 

E)    
  

 
 

************ 

341.1. Electric flux of a uniform field: 

A)   
   

 

 
 

B)   
 

     
 

C)            
D)           

E)   
 

  
 

************ 

342.1. Electric flux of a nonuniform 

field: 

A)    
 

  
 

B)    
    

     
 

C)         

D) d  
 

     
 

E)             

************ 

343.1. Choose a Gauss’s law: 

A)       

B)    
 

  
 

C)   
 

  
 

D)           

E)         
 

  
 

************ 

344.1. Choose a Gauss’s law: 

A)            

B)   
 

   
 

C)         
 

  
 

D)         

E)           
************ 

345.1. The total electric flux through 

a closed surface is equal to the total 

(net) electric charge inside the 

surface, divided be electric constant. 

It is: 

A) Kirchhoff’s junction rule 

B) Ohm’s law 

C) Coulomb’s law 

D) Kirchhoff’s junction loop rule 

E) Gauss’s law 

************ 

346.1. What can we say about electric 

field inside conductor? 

A) E=0 

B) E=1 

C) E=∞ 

D) E=-1 

E)   
 

  
 

************ 

347.1. What can we say about electric 

field outside charged conductor (with 

surface charge density  )? 

A)   
    

   
 
 

  
 

 

  
  

B)   
 

  
 

C)   
 

     
 

D)            

E)   
 

 
 

************ 

348.1. Electric charge conservation’s 

law: 

A)     
 

     
 
 

B)                           

C)   
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D)             

E)   
 

  
 

************ 

349.1. Electric charge conservation’s 

law: 

A)                

B)                        

            
C)                    

D)                      

E)              
 

  
 

************ 

350.1. Electric charge conservation’s 

law: 

A)       

B)       

C)     
   

 

 
 

D)       

E)           
************ 

351.1. The electric potential energy 

for two point charges depends by an 

equation: 

A)   
   

 

 
 

B)   
    

     
 

C)   
   

 
 

D)   
 

     
 

E)   
 

   
 

************ 

352.1. The formula for the electric 

potential of a point charge: 

A)   
 

     
 

B)   
    

     
 

C)   
   

 
 

D)   
    

     
 
 

E)          

************ 

353.1. Work done in an electric field: 

A)   
 

     
 

B)   
 

   
 

C)   
   

 

 
 

D)            

E)   
 

     
 
 

************ 

354.1. Work done in an electric field: 

A)   
   

 

 
 

B)        

C)          

D)   
 

  
 

E)   
 

     
 

************ 

355.1. Work done in an electric field: 

A)   
 

     
 

B)    
  

 
 

C)      

D)          

E)   
   

  
 

************ 

356.1. Work done in an electric field: 

A)   
 

   
 

B)   
 

     
 

C)   
    

     
 

D)        
 

  
 

E)   
    

    
 
 

  
 

 

  
  

************ 

357.1. Electric potential with several 

point charges: 

A) 
 

 
  

 

  
 

B)    
 

  
 

C)   
 

             
 

D)       
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E) 
 

 
 

 

  
 

 

  
 

 

  
   

 

  
 

************ 

358.1. Electric potential with several 

point charges: 

A)   
 

             
 

B)   
 

  
 

 

  
 

 

  
   

 

  
 

C)                

D) 
 

 
  

 

  
 

E)    
 

  
 

************ 

359.1. What is a potential difference? 

A)   
 

     
 

B)         

C)           

D)   
 

   
 

E)      
  

 
 

************ 

360.1. What is a potential difference? 

A)            

B)   
 

     
 

C)   
    

     
 

D)          
 

  
 

E)           
************ 

361.1. What is a relationship between 

electron volt and joule? 

A) 1. eV=6.02·10
-23

J 

B) 1. eV=8.85·10
-12

 J 

C) 1. eV=1.6·10
-19

 J 

D) 1. eV=8.31. J 

E) 1. eV=1.38·10
-16

 J 

************ 

362.1Any two conductors separated 

by an insulator (or a vacuum) form: 

A) resistor 

B) capacitor 

C) source 

D) conductor 

E) isolator 

************ 

363.1. What is a capacitance? 

A)        

B)   
 

 
 

C)   
 

  
 

D)          

E)    
  

 
 

************ 

364.1. What is a capacitance? 

A)            
B)        

C)   
 

   
 

D)   
 

     
 

E)   
 

 
 

************ 

365.1. What is a SI unit of a 

capacitance? 

A) Maxwel 

B) not unit 

C) volt/meter 

D) Coulomb 

E) Farad 

************ 

366.1. How can you calculate a 

capacitance of parallel-plate capacitor 

with dielectric? 

A)   
    

 
 

B)   
 

    
 

C)   
   

  
 

D)   
 

    
 

E)   
   

  
 

************ 

367.1. How can you calculate a 

capacitance of parallel-plate capacitor 

in vacuum? 

A)   
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B)   
 

   
 

C)   
   

 
 

D)   
   

 
 

E)        

************ 

368.1. Capacitance of capacitors of 

the series combination: 

A)       

B) 
 

 
 

 

  
 

 

  
 

 

  
   

 

  
 

C)                 

D)    
 

  
 

E)   
 

  
 

 

  
 

 

  
   

 

  
 

************ 

369.1. Capacitance of capacitors of 

the series combination: 

A)                 

B)   
 

             
 

C)       

D)   
 

  
 

 

  
 

 

  
   

 

  
 

E) 
 

 
  

 

  
 

************ 

370.1. Capacitance of capacitors of 

the parallel combination: 

A)                 

B) 
 

 
  

 

  
 

C) 
 

 
 

 

  
 

 

  
 

 

  
   

 

  
 

D)   
 

             
 

E)   
 

  
 

 

  
 

 

  
   

 

  
 

************ 

371.2 Capacitance of capacitors of the 

series combination: 

A) 
 

 
  

 

  
 

B)    
 

  
 

C)   
 

             
 

D)       

E) 
 

 
 

 

  
 

 

  
 

 

  
   

 

  
 

************ 

372.3 Potential energy stored in a 

capacitor: 

A)   
 

     
 

B)            

C)   
  

  
 

D)   
    

    
 
 

  
 

 

  
  

E)       

************ 

373.1. Potential energy stored in a 

capacitor: 

A)           

B)   
   

 
 

C)   
 

     
 

D)   
 

   
 

E)            
************ 

374.1. Potential energy stored in a 

capacitor: 

A)   
    

    
 
 

  
 

 

  
  

B)   
 

     
 

C)   
    

     
 

D)       

E)   
  

 
 

************ 

375.1. What is an electric energy 

density in a vacuum? 

A)       

B)   
 

   
 

C)   
   

 

 
 

D)         

E)   
 

 
 

************ 

376.1. What is a current? 

A)   
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B)   
    

    
 
 

  
 

 

  
  

C)   
  

  
 

D)            

E)   
 

     
 

************ 

377.1. What is a current? 

A)        
 

  
 

B)            

C)   
 

     
 

D)         
E)        

************ 

378.1. What is a current density? 

A)           

B)   
  

  
 

C)   
 

     
 

D)   
   

 

 
 

E)   
 

   
 

************ 

379.1. What is a current density? 

A)   
   

 
 

B)   
   

 

 
 

C)   
 

 
 

D)         

E)   
 

     
 

************ 

380.1. Choose the Ohm’s law: 

A)   
 

 
 

B)       

C)           

D)                

E)   
 

     
 

************ 

381.1. Choose the Ohm’s law: 

A)   
    

     
 

B)         
 

  
 

C)    
   

 
 

D) 
 

 
 

 

  
 

 

  
 

 

 
   

 

  
 

E)       

************ 

382.1. Choose the Ohm’s law: 

A)   
 

   
 

B)         
 

  
 

C)                

D)   
 

     
 

E)         
************ 

383.1. How does depend resistivity 

from temperature? 

A)              
B)             
C)           
D)             
E)             
************ 

384.1How can you calculate a 

resistance of a cylindrical conductor? 

A)    
 

 
 

B)    
 

 
 

C)   
 

  
 

D)       

E)   
 

  
 

385.1. What is relationship between a 

conductivity and a resistivity: 

A)   
 

   
 

B)   
 

   
 

C)   
 

 
 

D)       

E)   
 

   
 

************ 
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386.1. Choose the Ohm’s law for a 

complete circuit: 

A)   
 

   
 

B)        
 

  
 

C)         
D)             

E)   
    

     
 

************ 

387.1. Electric power: 

A)          

B)   
 

     
 
 

C)      

D)          

E)   
 

 
 

************ 

388.1. Electric power: 

A)   
   

 

 
 

B)           

C)   
    

    
 
 

  
 

 

  
  

D)   
  

 
 

E)            
************ 

389.1. Electric power: 

A)   
 

     
 

B)       

C)   
 

   
 

D)   
   

 
 

E)          
************ 

390.1. If the resistors connects in 

series that equivalent resistance is: 

A)                 

B)   
 

             
 

C) 
 

 
  

 

  
 

D) 
 

 
 

 

  
 

 

  
 

 

 
   

 

  
 

E)   
 

  
 

 

  
 

 

 
   

 

  
 

************ 

391.2 If the resistors connects in 

parallel that equivalent resistance is: 

A)   
 

             
 

B)                 

C) 
 

 
 

 

   
 

D) 
 

 
 

 

  
 

 

  
 

 

 
   

 

  
 

E)   
 

   
 

************ 

392.1. If the resistors connects in 

series that equivalent resistance is: 

A)       

B) 
 

 
  

 

  
 

C)   
 

             
 

D) 
 

 
 

 

  
 

 

  
 

 

 
   

 

  
 

E) 
 

 
               

************ 

393.1. How many Kirchhoff’s rules 

does exist? 

A) 1 

B) 2 

C) 3 

D) 4 

E) 5 

************ 

394.1. The algebraic sum of the 

currents into any junction is zero. It 

is: 

A) Gauss’s law 

B) Kirchhoff’s junction loop rule 

C) Kirchhoff’s junction rule 

D) Ohm’s law 

E) Coulombs’ law 

************ 

395.1. The algebraic sum of the 

potential differences in any loop must 

equal zero. It is: 

A) Kirchhoff’s junction rule 
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B) Coulombs’ law 

C) Gauss’s law 

D) Ohm’s law 

E) Kirchhoff’s junction loop rule 

************ 

396.1. Kirchhoff’s junction rule: 

A)             

B)         
 

  
 

C)   
 

     
 
 

D)       

E)                
397.1. Kirchhoff’s junction loop rule: 

A)       

B)   
 

     
 

C)   
 

     
 

D)   
 

 
 

E)                

************ 

398.1. Kirchhoff’s junction loop rule: 

A)           

B)   
   

 
 

C)         

D)   
 

   
 

E)         
************ 

399.1. Equation       depends: 

A) Ohm’s law 

B) Kirchhoff’s junction rule 

C) Kirchhoff’s junction loop rule 

D) Coulombs’ law 

E) Gauss’s law 

************ 

400.1. Equation      depends: 

A) Kirchhoff’s junction rule 

B) Coulombs’ law 

C) Gauss’s law 

D) Ohm’s law 

E) Kirchhoff’s junction loop rule 

************ 

401.1. You have a pure gold ring with 

mass 17.7 g. Gold has atomic mass of 

197 g/mol and atomic number of 79. 

How many protons are in the ring? 

A) 2.6·102
5
 

B) 6.56·10
21

 

C) 4.26·10
24 

D) 4.44·10
26

 

E) 9.8·10
27 

************ 

402.1. You have a pure gold ring with 

mass 17.7 g. Gold has atomic mass of 

197 g/mol and atomic number of 79. 

What is their total positive charge? 

A) 22 MC 

B) 34 kC 

C) 720 kC 

D) 0.68 MC 

E) 1.4 MC 

************ 

403.1. You have a pure gold ring with 

mass 17.7 g. Gold has atomic mass of 

197 g/mol and atomic number of 79. 

If the ring carries no net charge, how 

many electrons are in it? 

A) 2.6·10
25

 

B) 4.26·10
24

 

C) 4.4·10
16

 

D) 9.8·10
27

 

E) 6.46·10
24 

************ 

404.1. Two small spheres spaced 20 

cm apart have equal charge. How 

many excess electrons must be 

present on each sphere if the 

magnitude of the force of repulsion 

between them is 5.57·10
-11. 

N? 

A) 1.5·10
9
 

B) 7.8·10
3
 

C) 9.3·10
5
 

D) 8.9·10
7
 

E) 9.8·10
7 

************ 
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405.1. In experiment in space, one 

proton is held fixed and another 

proton is released from rest a distance 

of 2.5 mm away. What is the initial 

acceleration of the proton after it is 

released? (mass of a proton 1.67·10
-27

 

kg) 

A) 22 km/s
2
 

B) 3300 m/s
2
 

C) 4.4 m/s
2
 

D) 5.5 km/s
2
 

E) 66 km/s
2 

************ 

406.1. A proton is placed in a uniform 

electric field or 2.75·10
3
 N/C. 

Calculate the magnitude of the 

electric force felt by the proton. 

A) 4.26·10
24

 

B) 4.4·10
-16

 N 

C) 9.8·10
7
 

D) 2.6·10
11

m 

E) 2.6·10
5
m 

************ 

407.1. A proton is placed in a uniform 

electric field or 2.75·10
3
 N/C. 

Calculate the proton’s acceleration. 

A) 2.6·10
5
m 

B) 4.4·10
-16

 N 

C) 2.6·10
11

m/s
2
 

D) 9.8·10
7
 

E) 4.26·10
24 

************ 

408.1. A proton is placed in a uniform 

electric field or 2.75·10
3
 N/C. 

Calculate the proton’s speed after 1. 

μs in the field, assuming it starts from 

rest. 

A) 2.6·10
5
 m/s 

B) 2.6·10
11. 

m/s 

C) 4.4·10
-16

 m/s 

D) 9.8·10
7
 m/s 

E) 2.6·10
5
m/s 

************ 

409.1. An electron is released from 

rest in an uniform electric field. The 

electron accelerates vertically upward, 

travelling 4.5 m in the first 3 μs after 

it is released. What is the magnitude 

of the electric field? 

A) 11.2 V/m 

B) 5.7 V/m 

C) 0.55 V/m 

D) 3.5 V/m 

E) 7.3 V/m 

************ 

410.1. Two point charges are 

separated be 25 cm. Find the net 

electric field these charges produce at 

point A. 

 
A) 6540 V/m 

B) 8740 V/m 

C) 2200 V/m 

D) 10940 V/m 

E) 4340 V/m 

************ 

411.1. Two point charges are 

separated be 25 cm. Find the net 

electric field these charges produce at 

point B. 

 
A) 6540 V/m 

B) 2200 V/m 

C) 10940 V/m 

D) 4340 V/m 

E) 8740 V/m 

************ 

412.1. Find the magnitude of electric 

flux through the sphere of a radius 20 

cm with a charge of 26.55 nC in it. 
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A) 531. V·m 

B) 130 V·m 

C) 10400 V·m 

D) 3000 V·m 

E) 7000 V·m 

************ 

413.1. Find the magnitude of electric 

flux through the cube of a length 20 

cm with a fifty five electrons in it. 

A) 1·10
-7

 V·m 

B) 8·10
-7

 V·m 

C) 3.2·10
-7

 V·m 

D) 5·10
-7

 V·m 

E) 7·10
-7

 V·m 

************ 

414.1. A 6.2-nC charge is at the 

centre of a cube with sides of length 

0.5 m. What is the electric flux 

through one of the six faces of the 

cube? 

A) 31. V·m 

B) 334 V·m 

C) 117 V·m 

D) 25 V·m 

E) 155 V·m 

************ 

415.1. Two point charges q1=2.4 nC 

and q2=-6.5 nC. Find the potential at 

point A (see a figure). 

 
A) -1420 V 

B) 1420 V 

C) 0 V 

D) -737 V 

E) 737 V 

************ 

416.1. Two point charges q1=2.4 nC 

and q2=-6.5 nC. Find the potential at 

point B (see a figure). 

 
A) -704 V 

B) -270 V 

C) 974 V 

D) 704 V 

E) -974 V 

************ 

417.1. At a  certain distance from a 

point charge, the potential  and 

electric-field magnitude due to that 

charge 4.98 V and 12 V/m, 

respectively. What is the magnitude 

of the charge? 

A) 0.59 nC 

B) 0.23 nC 

C) 0.41. nC 

D) 0.48 nC 

E) 0.29 nC 

************ 

418.1. At a  certain distance from a 

point charge, the potential  and 

electric-field magnitude due to that 

charge 4.98 V and 12 V/m, 

respectively. What is a distance to the 

point charge? 

A) 59.7 cm 

B) 24.1. cm 

C) 41.5 cm 

D) 28.9 cm 

E) 297 cm 

************ 

419.1. An electron is to be 

acceleration from 3·10
6
 m/s to 8·10

6
 

m/s. Through what potential 

difference must the electron pass to 

accomplish this? 

A) 212 V 
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B) 121. V 

C) 87.8 V 

D) 256 V 

E) 156 V 

************ 

420.1. The plates of a parallel 

capacitor are 2.5 mm apart and each 

carries a charge of magnitude 80 nC. 

The plates are in vacuum. The electric 

field between the plates has 

magnitude of 4·10
6
 V/m. What is a 

potential difference between the 

plates? 

A) 10 kV 

B) 5 kV 

C) 2 kV 

D) 128 kV 

E) 32 kV 

************ 

 

421.1. The plates of a parallel 

capacitor are 2.5 mm apart and each 

carries a charge of magnitude 80 nC. 

The plates are in vacuum. The electric 

field between the plates has 

magnitude of 4·10
6
 V/m. What is area 

of each plate? 

A) 66. 2 cm
2
 

B) 22.6 cm
2
 

C) 36.6 cm
2
 

D) 75.5 cm
2
 

E) 55.5 cm
2 

************ 

422.1. The plates of a parallel 

capacitor are 2.5 mm apart and each 

carries a charge of magnitude 80 nC. 

The plates are in vacuum. The electric 

field between the plates has 

magnitude of 4·10
6
 V/m. What is the 

capacitance? 

A) 40 pF 

B) 5 pF 

C) 24 pF 

D) 8 pF 

E) 1.6 pF 

************ 

423.1. A 10-μF parallel-plate 

capacitor with circular plates is 

connected to a 12-V battery. What is 

the charge on each plate? 

A) 0.12 mC 

B) 0.83 mC 

C) 0.95 mC 

D) 1.44 mC 

E) 0.07 mC 

************ 

424.1. For the system of capacitors 

shown in figure, find the equivalent 

capacitance between b and c. 

 
A) 8 pF 

B) 22.6 pF 

C) 0.2 pF 

D) 35 pF 

E) 20 pF 

************ 

 

425.1. For the system of capacitors 

shown in figure, find the equivalent 



378 
 

capacitance between a and c. 

 
A) 20 pF 

B) 6.8 pF 

C) 0.2 pF 

D) 8.6 pF 

E) 22.6 pF 

************ 

426.1. In figure let C1=3μF, C2=5 μF 

and U=52 V. Calculate the charge on 

each capacitor. 

 
A) 41.6 μC 

B) 97.5 μC 

C) 156 μC 

D) 260 μC 

E) 6.5 μC 

************ 

427.1. In figure let C1=3μF, C2=5 μF 

and U=52 V. Calculate the potential 

difference between a and c. 

 
A) 26 V 

B) 6.5V 

C) 32.5 V 

D) 19.5 V 

E) 15 V 

************ 

 

428.1. In figure let C1=3μF, C2=5 μF 

and U=52 V. Calculate the potential 

difference between b and c.

 
A) 15 V 

B) 26 V 

C) 6.5 V 

D) 19.5 V 

E) 32.5 V 

************ 

429.1. Figure shows a system of four 

capacitors, where the potential 

difference across ab is 50 V. Find the 

equivalent capacitance of this system 
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between a and b. 

 
A) 3.6 μF 

B) 32 μF 

C) 0.03 μF 

D) 0.28 μF 

E) 4.5 μF 

************ 

430.1. Figure shows a system of four 

capacitors, where the potential 

difference across ab is 50 V. How 

much charge is stored in each of the 

10-μF and 9-μF? 

 
A) 0.44 mC 

B) 0.64 mC 

C) 1.56 mC 

D) 2.27 mC 

E) 0.18 mC 

************ 

431.1. During lighting strikes from a 

cloud to the ground, current as high as 

25000 A can occur and last for about 

40 μs. Yow much charge is 

transferred from the cloud to the earth 

during such a strike? 

A) 1000 C 

B) 1.6 kC 

C) 1. C 

D) 625 MC 

E) 87.5 C 

************ 

432.1. A silver wire 2.6 mm in 

diameter transfers a charge of 420 C 

in 80 min. Silver contains 5.8·10
28

 

free electrons per cubic meter. What 

is the current in the wire? 

A) 87.5 mA 

B) 129 mA 

C) 72mA 

D) 37.9 mA 

E) 93.7 mA 

************ 

433.1. A silver wire 2.6 mm in 

diameter transfers a charge of 420 C 

in 80 min. Silver contains 5.8·10
28

 

free electrons per cubic meter. What 

is the current density in the wire? 

A) 0.0375 A/mm
2
 

B) 2.063 A/mm
2
 

C) 0.0363 A/mm
2
 

D) 0.3 A/mm
2
 

E) 0.0165 A/mm
2 

************ 

434.1. A silver wire 2.6 mm in 

diameter transfers a charge of 420 C 

in 80 min. Silver contains 5.8·10
28

 

free electrons per cubic meter. What 

is the magnitude of the drift velocity 

of the electrons in the wire? 

A) 1.07·10
-3

 mm/s 

B) 2.1·10
-3

 mm/s 

C) 1.1·10
-3

 mm/s 

D) 1.8·10
-3

 mm/s 

E) 0.75·10
-3

 mm/s 

************ 

435.1. A 5-A current runs through a 

12-gauge copper wire (diameter 2.05 

mm) and through a light bulb. Copper 

has 8.6·10
28

 free electrons per cubic 

meter. How many electrons pass 

through the light bulb each second? 

A) 1·10
19

 

B) 2·10
19

 

C) 3·10
19
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D) 4·10
19

 

E) 5·10
19 

************ 

436.1. A 5-A current runs through a 

12-gauge copper wire (diameter 2.05 

mm) and through a light bulb. Copper 

has 8.6·10
28

 free electrons per cubic 

meter. What is the current density in 

the wire? 

A) 7.5 MA/m
2
 

B) 1.5 MA/m
2
 

C) 2.3 MA/m
2
 

D) 6.4 MA/m
2
 

E) 3.1. MA/m
2 

************ 

437.1. A 5-A current runs through a 

12-gauge copper wire (diameter 2.05 

mm) and through a light bulb. Copper 

has 8.6·10
28

 free electrons per cubic 

meter. At what speed does a typical 

electron pass by any given point in the 

wire? 

A) 3.1·10
-4

 m/s 

B) 1.1·10
-4

 m/s 

C) 2.2·10
-4

 m/s 

D) 6.4·10
-4

 m/s 

E) 7.5·10
-4

 m/s 

************ 

438.1. A copper wire has a square 

cross section 2.3 mm on a side. The 

wire is 4 m long and carries a current 

3.6 A. The density of free electrons is 

8.5·10
28

 m
-3

. Find the magnitude of 

the current density in the wire. 

A) 230 kA/m
2
 

B) 950 kA/m
2
 

C) 320 kA/m
2
 

D) 680 kA/m
2
 

E) 150 kA/m
2 

************ 

439.1. A copper wire has a square 

cross section 2.3 mm on a side. The 

wire is 4 m long and carries a current 

3.6 A. The density of free electrons is 

8.5·10
28

 m
-3

. Find the magnitude of 

the drift velocity of electrons in the 

wire. 

A) 9·10
-5

 m/s 

B) 5·10
-5

 m/s 

C) 3·10
-5

 m/s 

D) 1·10
-5

 m/s 

E) 7·10
-5

 m/s 

************ 

440.1. A copper wire has a square 

cross section 2.3 mm on a side. The 

wire is 4 m long and carries a current 

3.6 A. The density of free electrons is 

8.5·10
28

 m
-3

. How much time is 

required for an electron to travel the 

length of the wire? 

A) 1500 s 

B) 5 ms 

C) 0.6 Ms 

D) 700 s 

E) 80 ks 

************ 

441.1. Consider the circuit shown in 

figure. The terminal voltage of the 24-

V battery is 21.2 V. What is the 

internal resistance of the battery? 

 
A) 5.3 Ohm 

B) 6.7 Ohm 

C) 0.7 Ohm 

D) 11.3 Ohm 

E) 6 Ohm 

************ 

442.1. Consider the circuit shown in 

figure. The terminal voltage of the 24-

V battery is 21.2 V. What is the 
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resistance of the circuit resistor? 

 
A) 11.3 Ohm 

B) 6 Ohm 

C) 0.7 Ohm 

D) 5.3 Ohm 

E) 6.7 Ohm 

************ 

443.1. A copper transmission cable 

100 km long and 10 cm in diameter 

carries a current of 125 A. What is the 

potential drop across the cable? 

(resistivity of a copper is 17 pΩ·m) 

A) 27 V 

B) 7.35 V 

C) 37 V 

D) 21. V 

E) 18 V 

************ 

 

444.1. A copper transmission cable 

100 km long and 10 cm in diameter 

carries a current of 125 A. How much 

electrical energy is dissipated as 

thermal energy every hour? 

(resistivity of a copper is 17 pΩ·m) 

A) 1060 Kj 

B) 10.6 MJ 

C) 15.5 kJ 

D) 2.12 MJ 

E) 12 MJ 

************ 

445.1. A copper transmission cable 

100 km long and 10 cm in diameter 

carries a current of 125 A. How much 

electrical power is dissipated as 

thermal energy? (resistivity of a 

copper is 17 pΩ·m) 

A) 2125 W 

B) 3382 W 

C) 625 W 

D) 1250 W 

E) 5208 W 

************ 

446.1. An ideal voltmeter A is 

connected to a 2-Ω resistor and a 

battery with emf (electromotor force) 

5 V and internal resistance 0.5 Ω. 

What is the current in the resistor? 

A) 5 A 

B) 3.33 A 

C) 2.5 A 

D) 2 A 

E) 1.75 A 

************ 

447.1. An ideal voltmeter A is 

connected to a 2-Ω resistor and a 

battery with emf (electromotor force) 

5 V and internal resistance 0.5 Ω. 

What is the terminal voltage of the 

battery? 

A) 4 V 

B) 3.08 V 

C) 7.08 V 

D) 1.08 V 

E) 5.08 V 

************ 

448.1. An ideal voltmeter A is 

connected to a 2-Ω resistor and a 

battery with emf (electromotor force) 

5 V and internal resistance 0.5 Ω. 

What is the reading on the voltmeter? 

A) 3.08 V 

B) 5.08 V 

C) 1.08 V 

D) 7.08 V 

E) 4 V 

************ 

449.1. When switch S in figure is 

open, the voltmeter V of the battery 

reads 3.08 V. When the switch is 

closed, the voltmeter reading drops to 

2.97 V, and ammeter A reads 1.65 A. 
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Find the emf.

 
A) 7.08 V 

B) 1.08 V 

C) 4 V 

D) 3.08 V 

E) 5.08 V 

************ 

450.1. When switch S in figure is 

open, the voltmeter V of the battery 

reads 3.08 V. When the switch is 

closed, the voltmeter reading drops to 

2.97 V, and ammeter A reads 1.65 A. 

Find the internal resistance of the 

battery r.  

A) 0.067 Ω 

B) 1.13 Ω 

C) 4.27 Ω 

D) 1.13 Ω 

E) 3.08 Ω 

************ 

451.1. When switch S in figure is 

open, the voltmeter V of the battery 

reads 3.08 V. When the switch is 

closed, the voltmeter reading drops to 

2.97 V, and ammeter A reads 1.65 A. 

Find the circuit resistance R.

 
A) 0.067 Ω 

B) 3.08 Ω 

C) 2.47 Ω 

D) 1.8 Ω 

E) 1.13 Ω 

************ 

452.1. A battery-powered global 

positioning system receiver operating 

on 9 V draws a current of 0.13 A. 

How much electrical energy does it 

consume during 1.5 h? 

A) 1,755 Kw 

B) 1,755 W 

C) 6.3 kW 

D) 547 W 

E) 374 W 

************ 

453.1. A32-Ω resistor and a 20-Ω 

resistor are connected in parallel, and 

the combination is connected across a 

240-V dc line. What is the resistance 

of the parallel combination? 

A) 55 Ω 

B) 12.3 Ω 

C) 0,08 Ω 

D) 12 Ω 

E) 52 Ω 

************ 

454.1. A32-Ω resistor and a 20-Ω 

resistor are connected in parallel, and 

the combination is connected across a 

240-V dc line. What is the total 

current through the parallel 

combination? 

A) 20 A 
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B) 4.6 A 

C) 7.5 A 

D) 12 A 

E) 19.5 A 

************ 

 

455.1. A32-Ω resistor and a 20-Ω 

resistor are connected in parallel, and 

the combination is connected across a 

240-V dc line. What is the current 

through each resistor? 

A) 9.5 A; 10 A 

B) 4 A; 15.5 A 

C) 7.5 A; 12 A 

D) 1.5 A; 18 A 

E) 13.5 A; 6 A 

************ 

456.1.  A triangular array of resistors 

is shown in figure. What current will 

this array draw from a 35-V battery 

having negligible internal resistance if 

we connect it across ab? 

 
A) 2.5 A 

B) 4.5 A 

C) 3.15 A 

D) 3.5 A 

E) 3.25 A 

************ 

457.1. A triangular array of resistors 

is shown in figure. What current will 

this array draw from a 35-V battery 

having negligible internal resistance if 

we connect it across bc? 

 
A) 4.5 A 

B) 3.25 A 

C) 3.15 A 

D) 1.67 A 

E) 3.5 A 

************ 

458.1. A triangular array of resistors 

is shown in figure. What current will 

this array draw from a 35-V battery 

having negligible internal resistance if 

we connect it across ac? 

 
A) 3.5 A 

B) 3.25 A 

C) 3.15 A 

D) 4.5 A 

E) 1.67 A 

************ 

459.1. A triangular array of resistors 

is shown in figure. What current will 

this array draw from a 35-V battery 

having internal resistance of 3-Ω if we 

connect it across bc? 

 
A) 3.25 A 

B) 0.78 A 



384 
 

C) 3.5 A 

D) 3.15 A 

E) 4.5 A 

************ 

460.1. In the circuit shown in figure, 

the voltage across 2-Ω resistor is 12 

V. What is current through the 6-Ω 

resistor?  

A) 1. A 

B) 2 A 

C) 3 A 

D) 4 A 

E) 5 A 

************ 

461.1. In the circuit shown in figure, 

the voltage across 2-Ω resistor is 12 

V. What is the emf of the battery?

 
A) 3 V 

B) 6 V 

C) 12 V 

D) 18 V 

E) 24 V 

************ 

462.1. Two light bulbs have resistance 

of 400 Ω and 800 Ω. If the two light 

bulbs are connected in series across a 

120-V line, find the current through 

each bulbs. 

A) 0.3 A 

B) 0.1. A 

C) 1. A 

D) 0.15 A 

E) 1.44 A 

************ 

463.1. Two light bulbs have resistance 

of 400 Ω and 800 Ω. If the two light 

bulbs are connected in series across a 

120-V line, find the power dissipated 

in each bulbs. 

A) 12 W; 4 W 

B) 16 W; 8 W 

C) 8 W; 24 W 

D) 12 W; 4 W 

E) 4 W; 8 W 

************ 

464.1. Two light bulbs have resistance 

of 400 Ω and 800 Ω. If the two light 

bulbs are connected in series across a 

120-V line, find the total power 

dissipated in both bulbs. 

A) 12 W 

B) 18 W 

C) 24 W 

D) 36 W 

E) 6 W 

************ 

465.1. Two light bulbs have resistance 

of 400 Ω and 800 Ω. If the two light 

bulbs are connected in parallel across 

a 120-V line, find the current through 

each bulbs. 

A) 0.6 A; 0.15 A 

B) 1.875 A; 0.75 A 

C) 0.75 A; 1.5 A 

D) 0.3 A; 0.15 A 

E) 0.75 A; 0.25 A 

************ 

466.1. Two light bulbs have resistance 

of 400 Ω and 800 Ω. If the two light 

bulbs are connected in parallel across 

a 120-V line, find the power 

dissipated in each bulbs. 

A) 12 W; 36 W 

B) 36 w; 54 W 

C) 54 W; 36 W 
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D) 36 W; 18 W 

E) 18 W; 12 W 

************ 

467.1. Two light bulbs have resistance 

of 400 Ω and 800 Ω. If the two light 

bulbs are connected in parallel across 

a 120-V line, find the total power 

dissipated in both bulbs. 

A) 288 W 

B) 144 W 

C) 96 W 

D) 48 W 

E) 54 W 

************ 

468.1. In the series circuit of suppose 

R=300 Ω, L=60 mH, C=0.5 μF, U=50 

V and ω=10 krad/s. Find the voltage 

amplitude across capacitor. 

A) 60 V 

B) 30 V 

C) 40 V 

D) 20 V 

E) 50 V 

************ 

469.1. A friend returns to the United 

States from Europe with a 960-W 

coffeemaker, designed to operate 

from a 240-V line. What current will 

the coffeemaker draw from the 120-V 

line? 

A) 1. A 

B) 4 A 

C) 8 A 

D) 10 A 

E) 12 A 

************ 

470.1. How many types of magnetic 

charges do exist? 

A) 1 

B) 2 

C) 3 

D) 4 

E) don’t exist 

************ 

471.1. On which particles does 

magnetic field act?  

A) all particles 

B) only on positive particles 

C) only on moving negative particles 

D) all moving particles 

E) moving charged particles 

************ 

472.1. The magnitude of the magnetic 

force is given by: 

A)           

B)          

C)           

D)           

E)           

************ 

473.1. What is a magnetic force on a 

moving charge? 

A)              

B)            

C)          

D)            

E)            
************ 

474.1. What is a SI unit of magnetic 

field (in a vacuum)? 

A) Newton 

B) Tesla 

C) Weber 

D) Siemens 

E) Henry 

************ 

475.1. When an electric charge moves 

through electric and magnetic field 

that total force: 

A)         

B)           

C)                 

D)                  

E)                
************ 
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476.1. What is a magnetic field lines 

of a straight current-carrying wire? 

A) ellipsis 

B) infinity 

C) squares 

D) circles 

E) don’t exist 

************ 

477.1. Magnetic flux: 

A)             

B)             

C)            

D)             
E)             

************ 

478.1. Magnetic flux: 

A)           

B)          
C)          

D)           

E)           

************ 

479.1. What is a SI unit of a magnetic 

flux? 

A) Newton 

B) Tesla 

C) Weber 

D) Siemens 

E) Henry 

************ 

480.1. Choose a Gauss’s law for 

magnetism: 

A)           

B)         
 

  
 

C)         
 

  
   

D)                     

E)           

************ 

481.1. The total magnetic flux 

through a closed surface is: 

A) 0 

B) 1 

C) -1 

D) unknown 

E) ∞ 

************ 

482.1. The total magnetic flux 

through a closed surface is: 

A)  
 

  
 

B)     

C) 
 

  
 

D) 0 

E) 
 

  
   

************ 

483.1. The total magnetic flux 

through a closed surface is always 

zero. It is: 

A) Magnetic force 

B) Gauss’s law for magnetism 

C) Lentz’s rule 

D) Faraday’s law of induction 

E) Electrostatic theorem 

************ 

484.1. What does the cyclotron 

frequency equal? 

A)   
  

 
 

B)   
  

 
 

C)   
 

  
 

D)   
 

   
 

E)   
  

 
 

************ 

485.1. Magnetic force on a straight 

wire segment: 

A)            

B)            

C)            

D)           

E)              
************ 

486.1. Magnetic force on an 

infinitesimal wire section: 
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A)              

B)             

C)                

D)              

E)                 
************ 

487.1. Magnitude of torque on a 

current loop: 

A)            
B)           

C)   
 

 
    

D)           

E)          
************ 

488.1. What is a magnetic dipole of 

the current loop? 

A)       

B)    
 

 
    

C)    
  

   
 

D)    
   

   
 

E)       

************ 

489.1. What is a magnetic dipole of 

the current loop? 

A)           

B)           

C)           

D)           

E)           
************ 

490.1. Magnitude of torque on a 

current loop: 

A)          
B)           

C)   
   

  
 

D)                 

E)          
************ 

491.1. Vector torque on a current 

loop: 

A)                  

B)               

C)               

D)              

E)                    

************ 

492.1. How can you calculate a 

magnetic field of a straight current-

carrying wire: 

A)   
   

   
 

B)   
  

   
 

C)    
   

  
 

D)                 

E)        
************ 

493.1. How can you calculate a 

magnetic field of a circle wire in its 

centre: 

A)   
   

  
 

B)   
 

 
    

C)       

D)               

E)   
 

   
   

************ 

494.1. Ampere’s law (general 

statement): 

A)                     

B)         
 

  
 

C)           

D)         
 

  
   

E)           

************ 

495.1. The induced emf in a closed 

loop equals the negative if the time 

rate if a change of magnetic flux 

through the loop. It is: 

A) Electrostatic theorem 

B) Lentz’s rule 
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C) Magnetic force 

D) Faraday’s law 

E) Gauss’s law for magnetism 

************ 

496.1. Equation    
   

  
 means: 

A) Magnetic force 

B) Lentz’s rule 

C) Faraday’s law of induction 

D) Electrostatic theorem 

E) Gauss’s law for magnetism 

************ 

497.1. The direction of any magnetic 

induction effect is such as to opposite 

the cause of the effect. It is: 

A) Lenz’s law 

B) Farady’s law 

C) Ampere’s law 

D) Bio-Savar-Laplas’ law 

E) Weber’s law 

************ 

498.1. Choose Faraday’s law of 

induction: 

A)   
 

  
          

B)    
   

  
 

C)           

D)           

E)   
 

   
     

************ 

499.1. Self-inductance electromotive 

force: 

A)     
   

  
 

B)   
   

   
 

C)                 

D)   
  

   
 

E)     
  

  
 

************ 

500.1. Formula for the magnetic 

energy given by equation: 

A)   
   

   
 

B)                       

C)   
 

 
    

D)    
  

  
 

E)       

************ 

501.1. Magnetic energy density in 

vacuum: 

A)   
  

   
 

B)   
   

  
 

C)         

D)   
 

  
   

E)           

************ 

502.1. Angular frequency of 

oscillation in an L-C circuit: 

A)      
 

 
 

B)       

C)    
 

 
 

D)         

E)    
 

  
 

************ 

503.1. Period of oscillation in an L-C 

circuit: 

A)         

B)         

C)        

D) T    
 

 
 

E)    
 

 
 

************ 

504.1. Alternating current given by 

equation: 

A)           
B)          
C)           
D)            
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E)            
************ 

505.1. What is inductive resistance? 

A)         

B)        

C)       

D)       

E)        

************ 

506.1. What is capacitive resistance? 

A)       

B)    
 

 
 

C)    
 

 
 

D)    
 

  
 

E)    
 

  
 

************ 

507.1. What is the impedance? 

A)              
  

B)              
  

C)              
  

D)              
  

E)                

************ 

508.1. What is the impedance? 

A)           
 

  
 
 
 

B)          
 

  
 

C)                

D)           
 

  
 
 
 

E)           
 

  
 
 
 

************ 

509.1. Ohm’s law for the alternative 

current (AC) circuit: 

A)   
  

  
 

B)   
  

   
 

C)   
  

 
 

D)   
   

  
 

E)   
  

   
 

************ 

510.1. What is f root-mean-square 

value of a sinusoidal voltage? 

A)      
  

 
 

B)      
 

  
 

C)          

D)          

E)      
  

 
 

************ 

511.1. What is f root-mean-square 

value of a sinusoidal current? 

A)      
  

 
 

B)          

C)          

D)      
  

 
 

E)      
 

  
 

************ 

512.1. Power in a general AC circuit 

given by: 

A)                 

B)          

C)      

D)                

E)             

************ 

513.1. If the primary winding of 

transformer has less turns than the 

secondary that you have: 

A) step-down transformer 

B) step-left transformer 

C) step-up transformer 

D) step-right transformer 

E) step-zero transformer 

************ 

514.1. If the primary winding of 

transformer has more turns than the 

secondary that you have: 
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A) step-up transformer 

B) step-zero transformer 

C) step-right transformer 

D) step-down transformer 

E) step-left transformer 

************ 

515.1. If the secondary winding of 

transformer has more turns than the 

primary that you have: 

A) step-up inductor 

B) step-left conductor 

C) step-up transformer 

D) step-down source 

E) step-down transformer 

************ 

516.1. If the secondary winding of 

transformer has less turns than 

primary the that you have: 

A) step-left source 

B) triple-point transformer 

C) step-up transformer  

D) step-down transformer 

E) step-up transfmitter 

************ 

517.1. For the step-up transformer: 

A)       

B)       

C)       

D)       

E)        

************ 

518.1. For the step-up transformer: 

A)        

B)       

C)       

D)       

E)       

************ 

519.1. For the step-down transformer: 

A)       

B)       

C)        

D)       

E) 
  

  
   

************ 

520.1. For the step-down transformer: 

A)       

B)       

C)       

D)        

E)       

************ 

521.1. Speed of electromagnetic wave 

in vacuum: 

A)           

B)           

C)           

D)            

E)           

************ 

522.1. Speed of electromagnetic wave 

in vacuum: 

A)   
 

      
 

B)   
  

   
 

C)   
  

   
 

D)         

E)   
 

     
 

************ 

523.1. Speed of electromagnetic wave 

in a dielectric: 

A)   
 

    
    

B)   
   

    
 

C)   
 

       
 

D)   
 

     
   

E)   
 

   
     

************ 

524.1. Speed of electromagnetic wave 

in a dielectric: 

A)   
  

  
 

B)   
  

  
 

C)   
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D)   
 

   
 

E)   
 

   
 

************ 

525.1. What is relationship between 

electric field and magnetic field in the 

electromagnetic wave? 

A)      

B)     

C)       

D)       

E)       

************ 

526.1. What is relationship between 

electric field and magnetic field in the 

electromagnetic wave (in vacuum)? 

A)      

B)          

C)          

D)        

E)           

************ 

527.1. What is relationship between 

electric field and magnetic field in the 

electromagnetic wave? 

A)       

B)       

C)       

D)      

E)       

************ 

528.1. What is relationship between 

electric field and magnetic field in the 

electromagnetic wave (in vacuum)?? 

A)           

B)           

C)         

D)           

E)          

************ 

529.1. Poyting’s vector: 

A)    
 

  
        

B)    
 

  
   

C)                        

D)            

E)           
 

  
 
 
 

************ 

530.1. Calculate magnetic force on a 

proton moving in 2 mT magnetic field 

at 4·10
5
 m/s velocity. The angle 

between magnetic field and velocity is 

30˚.  

A)             

B)              

C)             

D)             

E)              

************ 

531.1. A beam of electrons moves at 

3·10
5
 m/s through a uniform 2-T 

magnetic field along the magnetic 

fields lines. Find the force on an 

electron. 

A)            

B)             

C)              

D)             

E) 3            

************ 

532.1. Find the magnetic flux trough a 

flat surface with area 3 cm
2
 in a 

uniform magnetic field 6-T. The angle 

between a normal and magnetic field 

is 0˚ 

A) 1.8 mWb 

B) 2 Wb 

C) 0 mWb 

D) 9 mWb 

E) 27 mWb 

************ 

533.1. Find the magnetic flux trough a 

flat surface with area 6 cm
2
 in a 

uniform magnetic field 60-T. The 

angle between a normal and magnetic 

field is 60˚ 

A) 9 mWb 
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B) 0 mWb 

C) 1. Wb 

D) 18 mWb 

E) 17 mWb 

************ 

534.1. Find the magnetic flux trough a 

flat surface with area 3 cm
2
 in a 

uniform magnetic field 6-T. The angle 

between a normal and magnetic field 

is 90˚ 

A) 18 mWb 

B) 9 mWb 

C) 27 mWb 

D) 1. Wb 

E) 0 mWb 

************ 

535.1. A metallic conductor at 0.5 m 

is in 2-T uniform magnetic field. 

Calculate the force on it if the current 

2 A and an angle between a normal 

and magnetic field lines is 90˚ 

A) 0.555 N 

B) 3 N 

C) 4 N 

D) 1. N 

E) 2 N 

************ 

536.1. A magnetron in a microwave 

oven emits electromagnetic waves 

with frequency 2236 MHz. What 

magnetic field strength is required for 

electrons to move in circular paths 

with this frequency? 

A) 0.83 T 

B) 0.08 T 

C) 52 T 

D) 0.04 T 

E) 4.68 T 

************ 

537.1. A magnetron in a microwave 

oven emits electromagnetic waves 

with frequency 7000 Mrad/s. What 

magnetic field strength is required for 

electrons to move in circular paths 

with this frequency? 

A) 0.08 T 

B) 1.43 T 

C) 3.1. T 

D) 0.54 T 

E) 0.04 T 

************ 

538.1. A circular coil 0.0500 m in 

radius, with 30 turns of wire, lies in a 

horizontal plane. It carries a counter 

clockwise current of 5.00 A. Find the 

magnitudes of the magnetic moment. 

A) 0.375 A·m
2
 

B) 0.29 A·m
2
 

C) 1.18 A·m
2
 

D) 8.11. A·m
2
 

E) 4.68 A·m
2 

************ 

539.1. A square coil 0.0500 m long, 

with 30 turns of wire, lies in a 

horizontal plane. It carries a counter 

clockwise current of 5.00 A. Find the 

magnitudes of the magnetic moment. 

A) 0.375 A·m
2
 

B) 3.57 A·m
2
 

C) 4.68 A·m
2
 

D) 1.18 A·m
2
 

E) 0.545 A·m
2 

************ 

540.1. A circular coil 0.0500 m in 

diameter, with 30 turns of wire, lies in 

a horizontal plane. It carries a counter 

clockwise current of 5.00 A. Find the 

magnitudes of the magnetic moment. 

A) 0.375 A·m
2
 

B) 1.43 A·m
2
 

C) 0.04 A·m
2
 

D) 0.29 A·m
2
 

E) 1.18 A·m
2
 

************ 

541.1. A circular coil 0.0500 m in 

radius, with 30 turns of wire, lies in a 

horizontal plane. It carries a counter 
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clockwise (as viewed from above) 

current of 5.00 A. The coil is in a 

uniform 1.20-T magnetic field 

directed toward the right. Find the 

torque on the coil.

 
A) 0.54 N·m 

B) 90 N·m 

C) 4.68 N·m 

D) 3.1. N·m 

E) 1.41. N·m 

************ 

542.1. An electron experiences a 

magnetic force of magnitude     
       when moving at an angle 60˚ 

of with respect to a magnetic field of 

magnitude        . Find the speed of 

the electron. 

A) 1.44 km/s 

B) 9.5 Mm/s 

C) 0.83 m/s 

D) 12 km/h 

E) 0.5 Mm/s 

************ 

543.1. A deuteron (the nucleus of an 

isotope of hydrogen) has a mass of 

              and a charge of +e. 

The deuteron travels in a circular path 

with a radius of 6.96 mm in a 

magnetic field with magnitude 2.50 T. 

Find the speed of the deuteron. 

A) 0.5 Mm/s 

B) 1.1. mm/s 

C) 0.83 Mm/s 

D) 1.44 km/s 

E) 0.93 m/s 

************ 

544.1. A deuteron (the nucleus of an 

isotope of hydrogen) has a mass of 

              and a charge of +e. 

The deuteron travels in a circular path 

with a radius of 6.96 mm in a 

magnetic field with magnitude 2.50 T. 

Find the time required for it to make 

half a revolution. 

A) 33 Ms 

B) 52 ns 

C) 111. μs 

D) 42 s 

E) 16 ms 

************ 

545.1. An electron in the beam of a 

TV picture tube is accelerated by a 

potential difference of 2.00 kV. Then 

it passes through a region of 

transverse magnetic field, where it 

moves in a circular arc with radius 

0.180 m. What is the magnitude of the 

field? 

A) 1.1. mT 

B) 0.54 mT 

C) 14.4 mT 

D) 0.84 mT 

E) 10 mT 

************ 

546.1. A long, straight conductor 

carries a 1.0-A current. At what 

distance from the axis of the 

conductor does the resulting magnetic 

field have magnitude? 

A) 4 mm 

B) 3.1. mm 

C) 90 mm 

D) 14.4 mm 

E) 0.5 mm 

************ 

547.1. Lightning bolts can carry 

currents up to approximately 20 kA. 

We can model such a current as the 

equivalent of a very long, straight 

wire. If you were unfortunate enough 
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to be 5.0 m away from such a 

lightning bolt, how large a magnetic 

field would you experience? 

A) 1000 mT 

B) 4.68 mT 

C) 14.4 mT 

D) 3.1. mT 

E) 0.8 mT 

************ 

548.1. A very long, straight horizontal 

wire carries a current such that  

         electrons per second pass 

any given point going from west to 

east. What are the magnitude and 

direction of the magnetic field this 

wire produces at a point 4.00 cm 

directly above it? 

A) 3.1. μT 

B) 1.43 μT 

C) 2.8 μT 

D) 90 μT 

E) 0.54 μT 

************ 

549.1. If the current in the toroidal 

solenoid of 40 μH (microhenry) 

increases uniformly from 0 to 6.0 A in 

30 μs, find the magnitude of the self-

induced emf. 

A) 110 V 

B) 42 V 

C) 33 V 

D) 80 V 

E) 70 V 

************ 

550.1. Charged 25-μF capacitor 

connected across a 10-mH inductor. 

Find the frequency of oscillation of 

the circuit. 

A) 220 Hz 

B) 320 Hz 

C) 120 Hz 

D) 240 Hz 

E) 125 Hz 

************ 

551.1. Charged 25-μF capacitor 

connected across a 10-mH inductor. 

Find the angular frequency of 

oscillation of the circuit. 

A) 10000 rad/s 

B) 100 rad/s 

C) 6660 rad/s 

D) 2000 rad/s 

E) 500 rad/s 

************ 

552.1. Charged 25-μF capacitor 

connected across a 10-mH inductor. 

Find the period of oscillation of the 

circuit. 

A) 13.1. ms 

B) 6.15 ms 

C) 11.2 ms 

D) 12 ms 

E) 3.1. ms 

************ 

553.1. The inductor has inductance 

0.260 H, di/dt=-0.018 A/s. Find the 

self-induced emf. 

A) 12 mV 

B) 468 mV 

C) 684 mV 

D) 4.68 mV 

E) 22.2 mV 

************ 

554.1. At the instant when the current 

in an inductor is increasing at a rate of 

0.064 A/m the magnitude of the self-

induced emf is 0.0160 V. What is the 

inductance of the inductor? 

A) 3.1. mH 

B) 0.25 H 

C) 1.43 mH 

D) 0.54 H 

E) 90 H 

************ 

555.1. When the current in a toroidal 

solenoid is changing at a rate of 0.026 

A/s, the magnitude of the induced emf 

is 12.6 mV. When the current equals 
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1.40 A, the average flux through each 

turn of the solenoid is 0.00285 Wb. 

How many turns does the solenoid 

have? 

A) 123 

B) 783 

C) 953 

D) 238 

E) 333 

************ 

556.1. In a proton accelerator used in 

elementary particle physics 

experiments, the trajectories of 

protons are controlled by bending 

magnets that produce a magnetic field 

of 4.80 T. What is the magnetic-field 

energy in a volume 10 cm
-3

 of space 

where B=4.8 T? 

A) 12 J 

B) 0.5 kJ 

C) 92 J 

D) 75 J 

E) 125 mJ 

************ 

557.1. A 7.50-nF capacitor is charged 

up to 12.0 V, then disconnected from 

the power supply and connected in 

series through a coil. The period of 

oscillation of the circuit is then 

measured to be            . 

Calculate the inductance of the coil. 

A) 14 μH 

B) 0.5 mH 

C) 1.43 mH 

D) 25 mH 

E) 0.54 μH 

************ 

558.1. A 7.50-nF capacitor is charged 

up to 12.0 V, then disconnected from 

the power supply and connected in 

series through a coil. The period of 

oscillation of the circuit is then 

measured to be            . 

Calculate the maximum charge on the 

capacitor. 

A) 90 nC 

B) 80 nC 

C) 70 nC 

D) 50 nC 

E) 30 nC 

************ 

559.1. A 7.50-nF capacitor is charged 

up to 12.0 V, then disconnected from 

the power supply and connected in 

series through a coil. The period of 

oscillation of the circuit is then 

measured to be            . 

Calculate the total energy of the 

circuit. 

A) 33.5 μJ 

B) 2.12 μJ 

C) 1.41. μJ 

D) 0.83 μJ 

E) 0.54 μJ 

************ 

560.1. The current amplitude in a pure 

inductor in a radio receiver is to be 

250 μA when the voltage amplitude is 

3.60 V at a frequency of 1.60 MHz (at 

the upper end of the AM broadcast 

band). What inductive reactance is 

needed? 

A) 14.4 Ω 

B) 14.4 kΩ 

C) 14.4 MΩ 

D) 144 mΩ 

E) 1.44 Ω 

************ 

561.1. The current amplitude in a pure 

inductor in a radio receiver is to be 

250 μA when the voltage amplitude is 

3.60 V at a frequency of 1.60 MHz (at 

the upper end of the AM broadcast 

band). What inductance is needed? 

A) 4.27 mH 

B) 5.14 mH 

C) 8.33 mH 
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D) 1.43 mH 

E) 7.62 mH 

************ 

562.1. In the series circuit of suppose 

R=300 Ω, L=50 mH, C=0.5 μF, U=50 

V and ω=10 rad/s. Find the inductive 

resistance. 

A) 100 Ω 

B) 200 Ω 

C) 600 Ω 

D) 400 Ω 

E) 500 Ω 

************ 

563.1. In the series circuit of suppose 

R=300 Ω, L=60 mH, C=0.5 μF, U=50 

V and ω=10 krad/s. Find the 

capacitive resistance. 

A) 100 Ω 

B) 200 Ω 

C) 600 Ω 

D) 400 Ω 

E) 500 Ω 

************ 

564.1. In the series circuit of suppose 

R=300 Ω, L=60 mH, C=0.5 μF, U=50 

V and ω=10 krad/s. Find the 

impedance. 

A) 100 Ω 

B) 200 Ω 

C) 600 Ω 

D) 400 Ω 

E) 500 Ω 

************ 

565.1. In the series circuit of suppose 

R=300 Ω, L=60 mH, C=0.5 μF, U=50 

V and ω=10 krad/s. Find current 

amplitude. 

A) 1. A 

B) 4 A 

C) 8 A 

D) 10 A 

E) 12 A 

************ 

566.1. In the series circuit of suppose 

R=300 Ω, L=60 mH, C=0.5 μF, U=50 

V and ω=10 krad/s. Find the voltage 

amplitude across resistor. 

A) 60 V 

B) 30 V 

C) 40 V 

D) 20 V 

E) 50 V 

************ 

567.1. In the series circuit of suppose 

R=300 Ω, L=60 mH, C=0.5 μF, U=50 

V and ω=10 krad/s. Find the voltage 

amplitude across inductor. 

A) 60 V 

B) 30 V 

C) 40 V 

D) 20 V 

E) 50 V 

************ 

568.1. In the series circuit of suppose 

R=300 Ω, L=60 mH, C=0.5 μF, U=50 

V and ω=10 krad/s. Find the voltage 

amplitude across capacitor. 

A) 60 V 

B) 30 V 

C) 40 V 

D) 20 V 

E) 50 V 

************ 

569.1. A friend returns to the United 

States from Europe with a 960-W 

coffeemaker, designed to operate 

from a 240-V line. What current will 

the coffeemaker draw from the 120-V 

line? 

A) 1 A 

B) 4 A 

C) 8 A 

D) 10 A 

E) 12 A 

************ 

570.1. What is the speed of light in 

vacuum? 
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A)          

B)          

C)           

D)          

E)          

************ 
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