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Introduction

Theoretical mechanics is the first discipline of the theoretical physics course,
which is read by students of the specialty "Physics” and it causes considerable
difficulties for students. This is primarily due to the use of theoretical structures and
high-level mathematical apparatus, which is an integral part of theoretical physics
and is difficult for students to perceive due to lack of strong enough mathematical
training.

The main textbook recommended for the study of this discipline is the first
volume of theoretical physics course in 10 volumes by L.D. Landau, E.M. Lifshits,
which in itself is rather difficult due to the high scientific level of presentation and, as
a consequence, the omission of the vast majority of mathematical calculations in
obtaining one or another equation. Laconic transformations at their detailed decision
at times occupy some pages of the text. Despite the popularity of the course (has
withstood 5 editions, translated into many languages), it is designed for well-educated
readers with strong mathematical training. The omission of many calculations is

accompanied by the expressions "from where it is obvious ...", "it is easy to show that
..", "having performed elementary transformations, we find ...", and a detailed
explanation of the physical meaning is often left "off-screen™. Nevertheless, a typical
theoretical mechanics curriculum for Physics was fully consistent with the content of
the first volume of this course.

It should be noted that the often criticized style of presentation of the
theoretical physics course in general and the first volume of "Mechanics™ in particular
(omission of many nontrivial computations replaced by the words "obvious”, "how
easy it is to show", etc., almost complete absence of references to specific works, and
mentioning only the names of the authors, sometimes excessive mathematization) is
the object of discussion from the first editions of the course, but it is not an original
invention of its authors. Exactly the same claims were made to the five-volume
"Heavenly Mechanics™ by Laplace (1799-1825). Thus, Nathaniel Boudich from
Boston, who translated four volumes of Laplace's work into English, once said:
"Whenever | met Laplace's statement, it's easy to see...", | was sure that | would
need hours of hard work until | filled in the blank, guess and show how easy it is to
see.

This tutorial is designed to help students to master the course of theoretical
mechanics and is a kind of replenishment of missed mathematical calculations of the
textbook. The manual is very detailed from a mathematical point of view, providing
an explanation of how to obtain a formula or expression with references to
elementary formulas, which should help students to master the methods of theoretical
physics in general and theoretical mechanics in particular, as well as help in
mastering other disciplines of the theoretical physics course, such as electrodynamics,
guantum mechanics, atomic and nuclear physics, and others.



The manual also includes questions for self-testing before the tasks on a
particular Chapter are solved, as well as tasks for self-review. After each chapter,
there are test assignments for theoretical material, which also fully correspond to

Includes questions and tasks on all main sections of the theoretical mechanics
course for physical specialties of universities.



Chapter 1 The equations of motion

1.1 Verification questions
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What does classical mechanics study?
What are the space and the time?

How can you define the position of a material point in space?

How can you define the position of a system N material point in space?
What is called the number of degrees of freedom?

How many number of degrees of freedom have got a material point?
How many number of degrees of freedom have got a rigid body?

What is a path (trajectory)?

If you know an equation of motion how can you get a path?

. What is called generalized coordinates?

. What is called generalized velocities?

. What is called generalized accelerations?

. How the position of point in Cartesian coordinate system is specified?

. How the position of point in cylindrical coordinate system is specified?

. How the position of point in spherical coordinate system is specified?

. What are relations between Cartesian, cylindrical and spherical coordinate

systems?

What is called Lame’s coefficients?

How can you Lame’s coefficients in Cartesian coordinate system define?
How can you Lame’s coefficients in polar coordinate system define?

How can you Lame’s coefficients in cylindrical coordinate system define?
How can you Lame’s coefficients in spherical coordinate system define?
How can you arc length differential in Cartesian coordinate system define?
How can you arc length differential in polar coordinate system define?
How can you define arc length differential in cylindrical coordinate
system?

How can define you arc length differential in spherical coordinate system?
Which quantities should you know for completely determination of the
state of mechanical system?

What is called an equation of motion?

Formulate and write down the second Newton’s law

On which does depend a force in classical mechanics?

What does equal the speed of propagation of interaction between bodies in
Newton’s mechanics? Why? Is it correct?
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31. Which is called inertial system?

32. What is an action?

33. Formulate principle of least action

34. Tell about properties of Lagrangian

35. Write down Lagrange’s equations

36. If you know Lagrangian what do you get using Lagrange’s equations?
37. Tell about properties of the space and the time

38. Formulate law of inertia

39. Formulate Galileo’s relativity principle

40. Get a Galilean transformation

41. Write down Lagrangian for a free particle

42. Write down Lagrangian for a system

43. Can a mass be negative? Why?

44. What is a closed system?

45. Get the second Newton’s law using Lagrangian for a particle

46. What field is called uniform?

47. What does equal a potential energy of a point in a uniform field?

1.2 Problems Solution

Problem 1.

Find Lame’s coefficients for the polar coordinate system.

Solution

Relation between polar and Cartesian coordinate systems is specified with
expression: . Using general formula

rewrite it for case Iin two dimensions — — and take

: : . Here you should not confuse angle
as the second coordinate in polar system and as general notation of coordinate

system’s equations . Then for the finding coefficients it is necessary calculate
expressions: — — for  the coordinate and
— —  for the coordinate . We find partial derivatives of

functions with respect two coordinates:



— — — i ) T.K
, T.K. — ,a—
T.K. — ,a—
We substitute the obtained expressions into formulas for u
— — using basic

trigonometrically identity, similar

Then write down finally Lame’s coefficients for the polar system:

In applying we often should find a distance between two points in this or other
coordinate system. The general expression for the arc length differential in the
curvilinear coordinates is defined with formula:

We substitute in this expression :
, and get the arc length differential in the polar system in thls form:

Determine amplitudes of velocities and acceleration in polar system using two
methods: the first using formulas of vectors’ amplitude and the second using Lame’s
coefficients.

The first method. The amplitude of velocity’s vector is defined equations:

, and acceleration’s vector . In polar

system case we have two dimensions: : . S0 having
relation between Cartesian and polar systems we need to find the first and the second
derivatives with respect to time:

Expression — we find wusing the rule of indirect
differentiation , coordinate  depend implicitely on the time.



We substitute in of

We combine similar terms and put the common factors in brackets:

So, amplitude of velocity vector in the polar system has the form

For finding amplitude acceleration vector we should find the second
derivatives from coordinates of, that the same, the first derivatives from velocity
projections, which we found:

Substitute the second derivatives in the formula for the amplitude
acceleration vector ;



So, amplitude acceleration vector in the polar system has the form:

The second method. The expression we can get from the
formula for proections of velocity vector via generalized coordinates:

We jet know Lame’s coefficients for the polar system , and
substituting : , We have next expressions for the projections of velocity
vector:

Projection is called radial velocity, and projection is called tranverse
projection.

For the amplitude of the vector we get:

In a similar way we can get amplitude acceleration vector using formulas for
projections of generalized acceleration:

where is notation —. As amplitude velocities vector we defined that

— - . Take again : :
and formulas for projections of accelerations will have the form:

Next find partial derivatives from quantity T with respect to and and
velocities and
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We substitute found expressions in the formulas for projections:
: - , and get amplitude

acceleration vector: . that the

same expression we get early.
As we see from this example the second method is more simple that the second
if we know Lame’s coefficients.

Problem 2.

Find return transformation formulas for the polar system, in other words
equalities of the form

Solution

For this we divide two parts of the equalities which relation the polar and
Cartesian coordinates by , rise to the second power and use major trigonometrically
identity:

Whence we obtain :
For finding the second equation we eliminate divided the first equality by the
second:

So, the transition from the polar system to Cartesian occurs with formulas:
—. These are return transitions formulas. Now when we

11



know these relations we find Lame’s coefficients, arc length differential, amplitudes
of velocity and acceleration using direct relations.

Take , - , . Than

— — is for coordinate and — — is for coordinate

. Next we find partial derivatives with respect to both coordinates:

Substitute obtained expressions:

As we saw early, amplitude of velocity vector in polar system has a form:

. We have equations reversible transformations and we can get
amplitude of velocity vector in Cartesian system. For this find partial derivative:

12



Substitute:

So we received known formula for the velocity vector.

Problem 3.
Find the formulas of transition from Cartesian coordinate system to
cylindrical coordinate system
Solution
According problem situation if we know functions
, that we should get functions which have the form

Cylindrical coordinates are defined equalities:

As we see coordinate  has the same value in the coordinate systems and we
should express in terms and in terms . For this we should divide two

13



parts of the first two equalities by , rise to the second power and use the basic
trigonometrically identity:

Whence we obtane

For finding the second equation we should eliminate divided one expression
by other:

So the transition from cylindrical coordinates to Cartesian is carried out

according formulas: - . These are the formulas of
reverse transformations.
Find the formulas of transition from Cartesian coordinate system to

cylindrical coordinate system

Problem 4.
Find the formulas of transition from Cartesian to spherical coordinate
system
Solution
According problem situation if we know functions
, we should get functions in the next forma

Spherical coordinates are defined by equalities

We divide the first equality by the second:

Next we divide expressions for  and by , rise two parts of
expression to the second power and apply the major trigonometrically equality:

14



We express from the third equality of transition’s formulas the radius, rise its to
the second power and substitute in the obtain expression:

Express the angle

So, we expressed nutation angle of the spherical system in the term Cartesian
coordinate. For getting we rise all three equalities of transition formulas to the
second power, add them and transformation:

Whence

So, we get next transition formulas from Cartesian system to the spherical
system:

15



that is Solution the set problem.

Problem 5.

There is a point in Cartesian coordinate system . Find the coordinates
of this point the cylindrical and spherical coordinate system.

Solution

For the transition to cylindrical system we use formulas
- . Whence for we just get . For the polar radius we have

~ and for the polar angle we have - . So
coordinates of the point un the cylindrical coordinate system we write in the next
form

For the transition to the spherical system we use formulas :

— —. JIFor the radius we will have

~, for the zenith angle we will have —_— — , for the
azimuth angle we will have - . So coordinates of the point un the
spherical coordinate system we write in the next form o

Problem 6.

A point moves in the ellipse - - with acceleration parallel y-axis.
Find acceleration as a function y, if

Solution

We should parametric equation of ellipse . Because an

acceleration is along the y-axis, that y-component is not equal to zero and x-
component is equal to zero. We define y-component finding the second derivative
from equation ;

Next we should find . For this we find the first derivative from equation
and use the initial conditions:

) , SO

Whence ——. Find the firs derivative from this equations as quotient
and we define

16



We use obtained early expression and get:

We substitute obtained values in obtained expression for the projection of
acceleration:

From We express and substitute in the obtained expression:

So we expressed finding component of acceleration as a function of coordinate.

Problem 7.

A point moves in the ellipse with semi-axis a and b with a constant value of
velocity . Define the acceleration and the velocity of a point as a function of
coordinates.

Solution

From equation of the ellipse - - we express x and y:

Find the first derivative from X this respect to time:

17



Unknown express from initial condition , Whence
and:

We rise to the second power two parts of this equation and expand the brackets
in the right part:

Clean the common factor:

Whence:

Substitute -

18



Extract the square root of this expression we will have:

When we extract the square root we lose “minus”. So we have finally:

Problem 8.
Find Lagrangian function of free material point in Cartesian coordinate system.

Solution
The Lagrangian function of free material point is defined by expression:

So we should find the square of the amplitude velocity in this coordinate
system. For Cartesian we have

Projections of a vector are defined as the first derivative from coordinates

So for the square of velocity we get
19



and for the Lagrangian function we will have the expression:

Problem 9.

Find Lagrangian function of free material point in cylindrical coordinate
system.

Solution

Use the expression for the Lagrangian in Cartesian obtained in the previous
problem and use formulas for the relation Cartesian and cylindrical coordinate
systems:

For the Solution we should find the first derivatives from cylindrical
coordinates and substitute them in the expression for Lagrangian.

Next we find square of these derivatives.

We substitute obtained expressions in the Lagrangian and do a transformations

Finally we can write:

Problem 10.
Find Lagrangian function of free material point in spherical coordinate system.
Solution

20



Use the expression — and relation between Cartesian and

spherical coordinate systems
Find the first derivatives from coordinates. And don’t forget that the
coordinates depend implicitly on the time:

Find square of obtained expressions:

Make a square of amplitude velocity:
L ]
L 1
]
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Write finally Lagrangian for free material point in spherical coordinates:

Problem 11.
Find the Lagrangian for a coplanar double pendulum (see figure 1), when
placed in a uniform gravitational field (acceleration g).

o

¥

Figure 1 — A coplanar double pendulum

Solution

We take as coordinates the angles  and  , which the strings and  make
with the vertical (see figure 1). Then we have for the kinetic and potential energy of
the first particle

where — moment of inertia of a particle, and :
22



We take “minus” because the zeroth reference level is taken as the level of the
x-axis, and the y-axis is directed downwards (see figure 1).
Lagrangian for the first particle we write in the next form:

To find the kinetic energy for the second particle we express its Cartesian
coordinates (with the origin at the point of support and the y-axis vertically
downwards) in terms of the angles

We use the formula for the kinetic energy:

Now we should find the first derivative from coordinates x and y:

and squares of these expressions:

We find the sum of squares, combine similar terms and use major
trigonometrically identity and expression for the cosine of difference:

Then for the kinetic energy of a particle ~ we have:

23



The potential energy of the second point has a form:

Lagrangian for the second particle we write in the form:

According additivity property of Lagrangian

We expand brackets and combine similar terms:

We get finally:

Problem 12.

Find Lagrnagisn of a simple pendulum of mass , witha mass  at the point
of support which can move on a horizontal line lying in the plane in which moves
(see figure 2), when placed in a uniform gravitational field (acceleration g).

24



Figure 2 — Simple pendulum with moving point of support

Solution

Using coordinate x of ~ and the angle ¢ between the string and the vertical.
For the point of support we will have:

For the kinetic energy of the pendulum we can write:

Now we should express coordinates and in the terms coordinates of
point of support and in the term angle

Find the first derivatives and substitute in the expression for the kinetic energy:

25



Potential energy of the pendulum we can write in this form
and Lagrangian will have the form:

According additivity property of Lagrangian

We do a transformation and finally we get:

Problem 13.

Find Lagrangian of a simple pendulum of mass whose point of support
moves uniformly on a vertical circle with constant frequency  (see figure 3), when
placed in a uniform gravitational field (acceleration g).

Figure 3 — Simple pendulum with moving point of support
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Solution
Using equation of the circle in parametric form : ,
express coordinates of point m:

Next using formula for the kinetic energy:

Now we should find the firs derivatives from coordinates x and y:

and squares of these expressions:

We find the sum of squared, combining common terms, using major
trigonometrically identity and the formula sine of difference:

Next for the Kinetic energy of the point  we get:

Potential energy of the point  will have the form:

Lagrangian of the point we can write in this form:

Finally we will have:
27



here we negligible terms which depend on only the time (the first and the
second), and we eliminate the complete derivative with respect to time from
, paBHas

Whence

Problem 14.
Find Lagrangian of simple pendulum of mass whose point of support
oscillates horizontally in the plane of motion of the pendulum according to the law
, When placed in a uniform gravitational field (acceleration g).
Solution
Coordinates of the point m are defined next way:

To use the formula for the kinetic energy:

Now we should find the first derivatives from coordinates x and y:

and squares from these expressions:

We find the sum of squared, combining common terms, using major
trigonometrically identity:

Next for the kinetic energy of the point  we get:

Potential energy of the point  will have the form:

Lagrangian of the point we can write in this form:

28



The first derivative depend explicitly only on time and then it is the complete
derivative from any other function of time. We find the complete derivative with
respect to time from ot and eliminate its from the Lagrangian:

Whence

Lagrangian (after eliminating complete derivatives)

Problem 15.

Find Lagrangian of a simple pendulum of mass  whose point of support
oscillates vertically according to the law , When placed in a uniform
gravitational field (acceleration g).

Solution

Similar previous problem coordinates of the point m are defined next way:

To use the formula for the kinetic energy:

Now we should find the first derivatives from coordinates x and y:

and squares from these expressions:

We find the sum of squared, combining common terms, using major
trigonometrically identity:

Next for the Kinetic energy of the point  we get:

Potential energy of the point  will have the form:

Lagrangian of the point we can write in this form:

29



The first derivative depend explicitly only on time and then it is the complete
derivative from any other function of time. We find the complete derivative with
respect to time from ot and eliminate its from the Lagrangian:

Whence

Lagrangian (after eliminating complete derivatives) will have a form:

Problem 16.

Find Lagrangian of the system shown in Fig. 4 The particle moves on a
vertical axis and he whole system rotates about this axis with a constant angular
velocity Q.

Figure 4 — For the problem 16

Solution
30



For finding Kinetic energy we use the property:

For this we should express the element of displacement in terms given
guantities. Let  be the angle between one of the segments a and the vertical, and

the angle rotation of the system about the axis; . For each particle the
infinitesimal displacement is given by . The distance of
from the point of support A is , and so

For the Kinetic energy of the point ~ we have:

Potential energy of the point  we can write next form:

The Lagrangian for the point

For the kinetic energy of the point we have:

Potential energy of the point ~ we can write next form:
The Lagrangian for the point

According additivity property of Lagrangian

Finally we get:

Problem 17.
Given the Lagrangian of free moving along the axis  material point —

Define generalized momenta , vector of generalized momentum, amplitude of
vector of generalized momentum, generalized forces , vector of generalized force,
amplitude of vector of generalized force, energy of the system, equation of motion of
the system.
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Solution
Generalized momenta are defined by formula —. In this case a motion is

one dimension and we have just one coordinate . Then

that is define traditional impulse of translational motion of a point.
Generalized forces are defined by formula —. Then

I.e., there is no forces acting on the particle, as it should be for a free particle.
Energy is defined by expression — . Expression — —

— we defined early, a , then

that coincides with formula for the kinetic energy of translational motion of a
particle.
The equations of motion we get using Lagrange’s equations the second type:

or, because

We got already expressions — and — and now it is necessary to define

We substitute all obtained quantities in the Lagrange’s equations and do a
transformations:

500051 , T.C. .
This equation express the law of inertia: if there are no external forces acting
on a body or the action of external forces is compensated , that body is in a
rest or in straight-line uniform motion
Problem 18.
Given the Lagrangian material point in the field — . Define

generalized momenta , vector of generalized momentum, amplitude of vector of
generalized momentum, generalized forces , vector of generalized force, amplitude
of vector of generalized force, energy of the system, equation of motion of the system
with vector and coordinate method specifying the motion (in Cartesian coordinate
system).
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Solution

1. With a coordinate method we have , and
Lagrangian will have a form:

Generalized momenta are defined by formula Generalized momenta are

defined by formula —. In this case a motion is three dimensions and we have
three coordinates . Then
derivatives — — — are equals to zero. Similar we find next

two projections of momentum on axis and

derivatives — — — - = = equals zero.

The vector of generalized momentum we write in Cartesian system in the next
form:

and its amplitude is defined by next formula

33



Generalized forces are defined by the formula
. Then

—, '€

where derivatives from function —

with respect to all
coordinates equal zero, let

Vector of generalized force in Cartesian system we write in the next form:

and its amplitude is defines by formula

Energy is defined by expression

— . Expressions — - we
defined early, and , then

I.e. finally we will get for energy of the system

The equations of motion we get using Lagrange’s equations the second type:

or, so and

34



Expressions — —, — and — — — we have already and we need define

We substitute all obtained quantities in the Lagrange’s equations and do a
transformations:

so we got the second Newton’s law in the coordinate form.
2. With a vector method , and and Lagrangian have a form:

Generalized momenta are defined by formula

—. In this case we describe
a motion using a position-vector . Then

Generalized forces are defined by formula —. Then

Energy is defined by expression —
we defined early, and , then

. Expression — — -

The equations of motion we get using Lagrange’s equations the second type:

or, because
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We got already expressions — u — yske MOJIy4eHbI U1 HEOOXOIUMO OTIPECIIUTh

We substitute all obtained quantities in the Lagrange’s equations and do a
transformations:

S0, we got the second Newton’s law in vector form.

Problem 19.
Given the Lagrangian of mechanical system (simple pendulum) —_
Define generalized momenta , vector of generalized momentum,
amplitude of vector of generalized momentum, generalized forces , vector of

generalized force, amplitude of vector of generalized force, energy of the system,
equation of motion of the system.
Solution

Generalized momenta are defined by formula —. In this case a motion is
one dimension and we have just one coordinate . Then

The second derivative equals zero because doesn’t depend on , the first
derivative gives for the vector of generalized momentum the expression (in this case
for the one dimension motion it coincides with projection of this vector on this axis)

Generalized forces are defined by formula —. In this case a motion is one
dimension and we have just one coordinate . Then

The first derivative equals zero because doesn’t depend on , the second
derivative gives for the vector of generalized force the expression (in this case for the
one dimension motion it coincides with projection of this vector on this axis)

(we should not multiply this derivative by , because we are finding the
derivative with respect not to time).
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Energy is defined by expression — . Expression — —
- we defined early, a , then

The equations of motion we get using Lagrange’s equations the second type:

or, because

We got already expressions — and — and now it is necessary to define ——:

We substitute all obtained quantities in the Lagrange’s equations and do a
transformations:

This is equation of motion of simple pendulum, which in case small oscillation

when , goes to known equation of harmonic oscillations:

rae — —angular frequency of the simple pendulum.

Problem 20.

Given the Lagrangian of mechanical system (free material point) in cylindrical
coordinates — . Define generalized momenta , vector of

generalized momentum, amplitude of vector of generalized momentum, generalized
forces , vector of generalized force, amplitude of vector of generalized force,
energy of the system, equation of motion of the system with vector and coordinate
method specifying the motion (in Cartesian coordinate system).

Solution
Generalized momenta are defined by formula —. In this case a motion is

three dimensions and we have three coordinates . Then
37



The vector of generalized momentum we write in cylindrical system in the next
form:

and its amplitude is defined by next formula

Generalized forces are defined by the formula —, TIe
. Then

The second and third derivatives equal zero because Lagrangian doesn’t
depend on and , the second derivative gives expression for the projection of
generalized force vector which coincides in this case with the same vector:

Energy is defined by expression — , which in cylindrical system

we should write in the form: — —_ - . Expressions — we
defined early when found projections of momentum vector:

Substitute to the expression for energy:

38



The equations of motion we get using Lagrange’s equations the second type:

or, because

Expressions — — — and — — , — we got and we should define ——,

Substitute al obtain quantities to the Lagrangian’s equations and do a
transformation:

These are target equation of motion.

Problem 21.
Given the Lagrangian of mechanical system (free material point) in spherical
coordinates — . Define generalized momenta

vector of generalized momentum, amplitude of vector of generalized momentum,
generalized forces , vector of generalized force, amplitude of vector of generalized
force, energy of the system, equation of motion.

Solution
Generalized momenta are defined by formula —. In this case a motion is

three dimensions and we have three coordinates . Then
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The vector of generalized momentum we write in spherical system in the next
form:

and its amplitude is defined by next formula

Generalized forces are defined by the formula —, r1e
. Then

The vector of generalized force we write in cylindrical system in the next form:

40



where , and its amplitude is define by formula

Energy is defined by expression — , which in spherical system

we should write in the form: — — — . Expressions — we
defined early when found projections of momentum vector:

Substitute to the expression for energy:

The equations of motion we get using Lagrange’s equations the second type:

or, because
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Expressions — — — and — — , — we got and we should define ——,

Substitute al obtain quantities to the Lagrangian’s equations and do a
transformation:

These three equations describe a motion of material point in projections on
axis.

1.3 Problems for independent work

In all the next problems you should find Lame’s coefficients, arc length
differential, amplitudes of velocity and acceleration in next coordinate system:

1. Cartesian coordinate system (see figure 5)
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Figure 5 — Cartesian coordinate system in space

2. Cylindrical coordinates (see figure 6)
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Figure 6 — Cylindrical coordinate system

3. Spherical coordinates
(see figure 7)
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Figure 7 — Spherical coordinate system

4. Elliptical coordinates
(see figure 8)

177 - 97/12

Figure 8 — Elliptical coordinate system in the plane
5. Parabolic coordinates in two dimensions - (see
figure 9)
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Figure 10 — Parabolic coordinate system in three dimensions
7. Cylindrical parabolic coordinates -

(see figure 11)



Figure 11 — Cylindrical parabolic coordinate system

8. Bipolar coordinates _— _— (see
figure 12)
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Figure 12 — Bipolar coordinate system

9. Toroidal coordinates

(see figure 13)
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Figure 13 — Toroidal coordinate system

Instruction: Because you have expressions which relation curvilinear
coordinates with Cartesian coordinates that the formula for Lame’s coefficients you

should take in the next form — — — ,where -.curvilinear
coordinates.

Problems with coordinates on the plane

1. Find the transition formulas from coordinate system to elliptical

2. Find the transition formulas from coordinate system to parabolic in
two dimensions

3. Find the transition formulas from coordinate system to bipolar

4. Find the transition formulas from polar system to elliptical
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5. Find the transition formulas from polar system to parabolic in two
dimensions

6. Find the transition formulas from polar system to bipolar

7. Find the transition formulas from elliptical system to polar

8. Find the transition formulas from elliptical system to parabolic in two
dimensions

9. Find the transition formulas from elliptical system to bipolar

10.Find the transition formulas from parabolic coordinate system in two
dimensions to polar

11.Find the transition formulas from parabolic coordinate system in two
dimensions to elliptical

12.Find the transition formulas from bipolar coordinate system to polar

13.Find the transition formulas from bipolar coordinate system to
elliptical

Problems with coordinates in the space

1. Find the transition formulas from coordinate system to parabolic in
three dimensions :

2. Find the transition formulas from coordinate system to toroidal

3. Find the transition formulas from cylindrical coordinate system to
spherical :

4. Find the transition formulas from cylindrical coordinate system to
parabolic in three dimensions

5. Find the transition formulas from cylindrical coordinate system to
toroidal

6. Find the transition formulas from spherical coordinate system to
cylindrical

7. Find the transition formulas from spherical coordinate system to
parabolic in three dimensions

8. Find the transition formulas from spherlcal coordinate system to
toroidal

9. Find the transition formulas from parabolic coordinate system in three
dimensions to cylindrical

10.Find the transition formulas from parabolic coordinate system in three
dimensions to spherical

11.Find the transition formulas from parabolic coordinate system in three
dimensions to toroidal

12.Find the transition formulas from toroidal coordinate system to
cylindrical

13.Find the transition formulas from toroidal coordinate system to
spherical
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14.Find the transition formulas from toroidal coordinate system to

parabolic in three dimensions

Problems to make Lagrangian

1.
2.
3.

4.
5.

6.
7.

Find Lagrangian fo free material point in polar coordinates.

Find Lagrangian fo free material point in elliptical coordinates.

Find Lagrangian fo free material point in parabolic coordinates in two
dimensons.

Find Lagrangian fo free material point parabolic coordinates in three
coordinates.

Find Lagrangian fo free material point in cylindrical parabolic coordinates.

Find Lagrangian fo free material point in bipolar coordinates.

Find Lagrangian fo free material point in toroidal coordinates.

Problems with Lagrangian

1.

Given the Lagrangian of mechanical system (free material point)

—— —. Define generalized momenta , vector of generalized

momentum, amplitude of vector of generalized momentum, generalized
forces , vector of generalized force, amplitude of vector of generalized
force, energy of the system, equation of motion.

Given the Lagrangian of mechanical system (free material point)

—— —. Define generalized momenta , vector of generalized

momentum, amplitude of vector of generalized momentum, generalized
forces , vector of generalized force, amplitude of vector of generalized
force, energy of the system, equation of motion.

JI Given the Lagrangian of mechanical system (free material point)

— . Define generalized momenta , vector of

generalized momentum, amplitude of vector of generalized momentum,
generalized forces , vector of generalized force, amplitude of vector of
generalized force, energy of the system, equation of motion.

Given the Lagrangian of mechanical system (free material point)

— . Define generalized momenta , vector of generalized

momentum, amplitude of vector of generalized momentum, generalized
forces , vector of generalized force, amplitude of vector of generalized
force, energy of the system, equation of motion.

Given the Lagrangian of mechanical system (free material point)

— — . Define generalized momenta , vector

of generalized momentum, amplitude of vector of generalized momentum,
generalized forces , vector of generalized force, amplitude of vector of
generalized force, energy of the system, equation of motion.
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10.

11.

Given the Lagrangian of mechanical system (free material point)

— . Define generalized momenta |,

vector of generalized momentum, amplitude of vector of generalized
momentum, generalized forces , vector of generalized force, amplitude of
vector of generalized force, energy of the system, equation of motion.
Given the Lagrangian of mechanical system (free material point)

— . Define generalized momenta , vector of

generalized momentum, amplitude of vector of generalized momentum,
generalized forces , vector of generalized force, amplitude of vector of
generalized force, energy of the system, equation of motion.

Given the Lagrangian of mechanical system (free material point)

— — . Define generalized momenta , vector of
generalized momentum, amplitude of vector of generalized momentum,
generalized forces , vector of generalized force, amplitude of vector of
generalized force, energy of the system, equation of motion.

Given the Lagrangian of mechanical system (free material point)

. Define generalized momenta

vector of generalized momentum, amplitude of vector of generalized
momentum, generalized forces , vector of generalized force, amplitude of
vector of generalized force, energy of the system, equation of motion.
Given the Lagrangian of mechanical system (free material point)

—_ - . Define generalized momenta , vector of

generalized momentum, amplitude of vector of generalized momentum,
generalized forces , vector of generalized force, amplitude of vector of
generalized force, energy of the system, equation of motion.

Given the Lagran